
BACKORDERS: Using Random Forests to Detect DDoS Attacks in
Programmable Data Planes

Bruno Coelho
blcoelho@inf.ufrgs.br

Federal University of Rio Grande do Sul
Porto Alegre, Rio Grande do Sul, Brazil

Alberto Schaeffer-Filho
alberto@inf.ufrgs.br

Federal University of Rio Grande do Sul
Porto Alegre, Rio Grande do Sul, Brazil

ABSTRACT
Networks and the services they support form the communication
backbone of our society, and it is important that potential Dis-
tributed Denial of Service (DDoS) attacks are detected quickly, in or-
der to avoid or minimize the impact they may have on the availabil-
ity of services. Recent technological advances in programmable net-
works – specifically the programmability of data planes in switches
and routers, have made available new ways of detecting such at-
tacks. By relying on this newfound possibility, this paper proposes
the utilization of a Random Forest (RF) to aid in quickly and accu-
rately detecting DDoS attacks in a programmable switch. Random
forests utilize several classification trees, each of them for indepen-
dently classifying an input as one of a set of classes. Here, each
decision tree will classify a network flow as potentially malicious,
i.e. part of a DDoS attack, or a legitimate user flow. Despite utilizing
multiple classification trees to improve accuracy, random forests
are relatively lightweight, with each tree requiring few and simple
computations to arrive at a classification. Our results show that
even small RFs, requiring as few as 63 match+action table entries,
can achieve F1-Scores of over 90%.

CCS CONCEPTS
• Networks → Programmable networks; In-network processing;
Denial-of-service attacks; • Computing methodologies → Classi-
fication and regression trees.

KEYWORDS
Random forest, programmable data plane, DDos attacks

ACM Reference Format:
Bruno Coelho and Alberto Schaeffer-Filho. 2022. BACKORDERS: Using
Random Forests to Detect DDoS Attacks in Programmable Data Planes . In
P4 Workshop in Europe (EuroP4 ’22), December 9, 2022, Roma, Italy. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3565475.3569074

1 INTRODUCTION
Distributed Denial of Service (DDoS) attacks remain an issue to
network operators, as even brief disruptions in service can lead to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroP4 ’22, December 9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9935-7/22/12. . . $15.00
https://doi.org/10.1145/3565475.3569074

economic losses [17]. Further, attacks have become more sophis-
ticated, making it harder to differentiate between legitimate and
malicious traffic [2]. Flow-based analysis tries to classify a group
of packets belonging to the same connection as malicious or not.
In order to do this, classifiers may calculate statistical values such
as the average, maximum, and minimum packet size or the time in
between the arrival of consecutive packets of a specific flow [13].

Current techniques for DoS/DDoS detection generally lack in
at least one of accuracy, detection speed, or scalability [19]. This
can be partially attributed to systems choosing between utilizing
the limited but efficient interfaces provided by traditional switches
or utilizing more software-based approaches, allowing more cus-
tomization at the cost of throughput [16]. However, recent break-
throughs in the field of programmable networks have allowed for
further programmability of switches. As opposed to fixed-function
switches, programmable switches allow researchers to propose and
evaluate new ideas in sufficiently realistic settings [1]. As such,
performing the detection of DDoS attacks in programmable data
planes is a promising alternative to traditional approaches.

By capitalizing on programmable data planes, in this paper we
propose a system capable of efficiently processing individual pack-
ets in order to classify their respective flows into likely being part
of an attack or genuine user traffic. To achieve this, we design and
evaluate BACKORDERS, a system that combines a well studied
technique in artificial intelligence, namely Random Forest [5], with
recent developments in programmable switches attending to the
P4 language specification [1]. Our system is capable of inserting
a pre-trained model of Random Forest (RF) into a programmable
switch, calculating statistical values and utilizing the RF to accu-
rately classify flows at line rate. As low-bandwidth DDoS attacks
tend to be harder to detect [10], our system trains a Machine Learn-
ing (ML) model to efficiently learn and detect the patterns present
in these attacks, in order to achieve higher accuracy than many of
the simple methods used in DDoS detection and defense.

The remaining of this paper is organized as follows. Section 2
presents background information about random forests. Section 3
describes BACKORDERS, detailing the intuition behind the use of
random forests and the system architecture. Section 4 presents the
conducted experiments. In Section 5, we discuss the related work,
and finally Section 6 presents the concluding remarks.

2 RANDOM FORESTS
In this section, we present theoretical background on Random
Forests, the Machine Learning technique employed for DDoS de-
tection.

Decision Tree (DT) is a technique that performs a series of chained
comparisons (“tests”) of values in order to arrive at a decision. The

1

https://doi.org/10.1145/3565475.3569074
https://doi.org/10.1145/3565475.3569074
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3565475.3569074&domain=pdf&date_stamp=2022-12-06

EuroP4 ’22, December 9, 2022, Roma, Italy Bruno Coelho and Alberto Schaeffer-Filho

algorithm branches to a different node depending on the result of
the test, repeating this process until it arrives at a leaf node, where
a decision is obtained [11]. Classification Trees (CTs) are a subset of
DTs where the attribute the algorithm is trying to predict (known
as the target attribute) is a discrete value, i.e., a class.

The C4.5 [12] algorithm can be utilized to generate classification
trees based on the normalized information gain of each node. The
value of normalized information gain utilizes the entropy of the set
of samples, calculated as:

𝑆 (𝐷) = −
∑︁
𝑖∈𝑀

𝑝𝑖 log2 (𝑝𝑖) (1)

where 𝑆 (𝐷) is the entropy of the set 𝐷 and 𝑝𝑖 is the probability
of a sample to belong to class 𝑖 in the set of possible classes 𝑀 .
Along with the entropy of the whole set 𝐷 , given the set 𝑉 of
possible values 𝑗 of the attribute 𝐴, the entropy 𝑆𝐴 (𝐷) of the set 𝐷
after splitting it into subsets based on the value of the attribute 𝐴
is calculated as a weighted average of the entropy 𝑆 (𝐷 𝑗) of each
subset 𝐷 𝑗 , using the proportion of samples in the subset as weight.
Given the entropy of the whole set (𝑆 (𝐷)) and the subsets (𝑆𝐴 (𝐷)),
the normalization factor is calculated as:

𝑆𝑝𝑙𝑖𝑡𝑆𝐴 (𝐷) = −
∑︁
𝑗∈𝑉

|𝐷 𝑗 |
|𝐷 | × log2 (

|𝐷 𝑗 |
|𝐷 |) (2)

where |𝐷 𝑗 | is the number of samples in the subset 𝐷 𝑗 and |𝐷 | is the
number of samples in the set 𝐷 . Given this last partial value, the
normalized information gain is calculated by dividing the informa-
tion gain, defined as the difference of entropy between set (𝑆 (𝐷))
and subset (𝑆𝐴 (𝐷)), by the normalization factor (as shown in (2)).
This value is calculated for each attribute 𝐴, with the algorithm
selecting the attribute with the highest normalized information
gain.

Random Forest is an ensemble system that combines several
classification trees at the learner level [5]. For the other levels, a
number of techniques can be used, resulting in different forests.
In this work, we utilize simple majority voting at the combination
level,

√
𝑛 features examined per node (split) out of the 𝑛 features

available at the feature level, and bootstrapping at the data level.

3 THE BACKORDERS SYSTEM FOR DDOS
DETECTION IN THE DATA PLANE

In this section, we detail our proposed system, BACKORDERS.

3.1 Approach Overview
BACKORDERS is a system for classifying network traffic within
the data plane, with the main purpose of detecting DDoS attacks.
To achieve this goal, we utilize a Random Forest model to aid in the
process of classifying flows.

The training of a Random Forest (RF) is costly, both in terms of
CPU and memory utilization. Thus, we elect to perform this step
in the control plane, as it has more available resources. Despite the
training of an RF being computationally heavy, the evaluation of a
sample is relatively simple. The process of evaluating a sample con-
sists of several comparisons being made, comparing pre-calculated
values, called thresholds, against values calculated for each sample,

Root Node 0

Internal Node 1
Packet Count ≤ 7 Packet Count > 7

0

Total Length ≤ 114
Total Length > 114

1

5

10

2

3 4

7 8 9

6

1211

13 14 15 16

Feature: Packet Count
Value: 7

Children: 1, 2

Feature: Total Length
Value: 114

Children: 3, 4

Leaf Node 10
Classification:

Malicious

Leaf Node 11
Classification:

Legitimate

Figure 1: Example of nodes of a Classification Tree.

called features. While a Classification Tree can have a large num-
ber of nodes, the number of comparisons done is logarithmic. As
such, we propose the use of an RF model in P4-enabled switches to
perform the classification of flows at line-rate.

3.2 Random Forest Classification in the Data
Plane

Given a Random Forest model, the first step towards performing
online classification in the data plane is to map the forest’s struc-
ture and operations to the constructs available in the P4 language,
while also considering the limitations imposed by the hardware of
programmable switches. Specifically, programmable switches do
not support floating-point numbers, complex arithmetic operations
(e.g., divisions), or loops (e.g., for, while, recursion). Finally, pro-
grammable switches have a limited amount of memory, around a
few tens of megabytes of available SRAM [18].

A Classification Tree (CT) is a collection of nodes. Each of these
nodes can be either an internal node or a leaf node. To evaluate an
internal node, it is necessary to first perform a comparison against
a threshold value or a series of class values. The algorithm branches
to a different node depending on the result of the comparison.
Evaluating a leaf node is a bit simpler, as all the information they
hold is a classification for samples whose path leads to that leaf.

Classification Trees are commonly implemented utilizing re-
cursion. However, P4 does not allow recursion, nor does it allow
structures to reference other instances of that same structure. That
is, a CT node cannot directly reference another CT node. Thus, we
propose a way to map the information that each node must hold
into entries of a match+action table.

Given an internal node, we map its relevant feature, threshold,
and children to a match+action table. In our approach, each node has
a unique identifier, such as ‘0’ and ‘1’. Figure 1 shows an example
of a classification tree. A representation of the match+action table
entry that node ‘0’ would be mapped to can be seen in Table 1.
As such, this mapping would match its identifier ‘0’, invoking the
action compare_pkt_count (i.e., compare packet count of that flow),
passing as parameters the threshold 7 and its children, ‘1’ and ‘2’.
Once invoked, the action would compare the appropriate feature

2

BACKORDERS: Using Random Forests to Detect DDoS Attacks in Programmable Data Planes EuroP4 ’22, December 9, 2022, Roma, Italy

Programmable Switch

Feature Computation
compute_features(data)

label_flows(data)

Network Traffic
Collector

Offline Classifier

send(flows[], features[])(optional)

Selected Forest

Tree N

train_forest(flows[], labels[])

{
 table: tree_i_depth_j,
 match: ... ,
 action_name: ... ,
 action_params: {
 threshold: ... ,
 child_l: ... ,
 child_r: ...
 }
}

forest_data.json

forest_layout.p4

table tree_i_depth_j{
 key = {
 meta.node_id: exact;
 }
 actions = {
 compare_feature_X;
 compare_feature_Y;
 ...
 classify_flow;
 }
}

extract_features()

Feature Extractor
Registers Metadata

reg_iat_max meta.iat_max

reg_pkt_size meta.pkt_size

reg_prev_time meta.iat

... ...

train_forest(flows[], features[])

Tree 1 Layer 2

next_tree()

Tree 1 Layer M

next_tree()

Tree N-1 Layer M

tally_votes()

Tree N Layer M

classify_flow()

next_layer()

next_layer()

Parser

parse_ethernet{}
parse_ipv4{}
parse_tcp{}
parse_udp{}

...

Vote Tallying

next_tree()
...

Control Plane
Data Plane

RF Trainer
Algorithm: ...
Features: ...
Trees: ...
Max. Depth: ...

map_to_dataplane(random_forest)

Switch API

RF Mapper

Table Structure

Tree 1
Layer 1
Tree 1
Layer 2
Tree 1

Layer M

Tree N
Layer 1
Tree N
Layer 2
Tree N

Layer M

O
U
T
P
U
T

Network
Packet

I
N
P
U
T Network

Packet

Tree 1 Layer 1
ID Action Threshold LNode RNode

...

Figure 2: The Architecture of BACKORDERS: the main modules run in the control plane (RF Mapper) and in the data
plane/programmable switch (feature extractor and online classifier).

Table 1: Example of the mapping of internal nodes to a
match+action table

Match Value Action Parameters
Node ID Threshold Child 1 Child 2

0 compare_pkt_count 7 1 2
1 compare_total_length 114 3 4
2 compare_feature_B y 5 6
8 compare_feature_H z 15 16

to the threshold passed as parameter, indicating that the next node
to be evaluated is ‘1’ if pkt_count has a value less than or equal to
7, or node ‘2’ otherwise.

3.3 BACKORDERS Architecture
The architecture of BACKORDERS comprises several components,
which are shown in Fig. 2. (1) RF Mapper is a module that runs
in the control plane and is responsible for converting the RF into
BACKORDERS’s internal representation. In order to perform the
classification of network traffic at line-rate, BACKORDERS im-
plements two additional modules in the data plane, (2) a feature
extractor module, and (3) an online classifier module, responsible
for orchestrating the multiple Classification Trees implemented in
the data plane. These components will be discussed in detail next1.

3.3.1 RF Mapper. This module is responsible for taking an input
describing the structure of a Classification Tree (CT) and mapping it
to a series of match+action tables to be inserted into the switch. As
Random Forests contain multiple CTs, we apply this process over

1BACKORDERS also relies on a set of off-the-shelf external components, such as network
traffic collector and random forest training algorithms. Since these are not part of the
core of our solution, they will not be detailed here.

each tree in the forest. Each node in a tree, either internal or leaf,
has a unique identifier, which is used to perform the matching in
match-action tables. Internal nodes also specify the feature to be
used, threshold, and children. The feature field is mapped into a spe-
cific P4 action. Ergo, every node that utilizes a specific feature will
invoke the same action. Table 1 shows an example of this mapping,
where a node that utilizes the number of packets of that flow will
invoke the corresponding compare_pkt_count action, comparing
the pkt_count feature of that flow to the threshold parameter in the
match+action table entry. This will be true for every node with
pkt_count as its feature. The threshold2 of a node is passed as a
parameter to the action that will perform the comparison. This is
configured by the controller, responsible for inserting the corre-
sponding match+action table entry in the switch. As a comparison
against a threshold can only produce two results (i.e., greater than
the threshold or not), each internal node has exactly two children.
A node’s children is mapped by passing their respective identifiers
as parameters to the same action.

Leaf nodes only contain an identifier and a classification, having
a different format for match+action table entries. Table 2 shows an
example of the mapping of leaf nodes. Every leaf node utilizes the
same action, classify_flow, passing as parameter the classification
predicted by this leaf node.

3.3.2 Feature Extractor. Thismodule is located in the programmable
data plane of a P4-enabled switch and performs feature computa-
tion for each incoming packet. It uses packet metadata and header
values to calculate flow features to be used by the RF.

2Our system only implements numeric features at this time. We believe this is ap-
propriate for network traffic classification, as network protocol headers are generally
interpreted as either a number or a boolean flag (0 or 1).

3

EuroP4 ’22, December 9, 2022, Roma, Italy Bruno Coelho and Alberto Schaeffer-Filho

Table 2: Example of the mapping of leaf nodes to a
match+action table

Match Value Action Parameters
Node Identifier Classification

5 classify_flow LEGITIMATE
9 classify_flow LEGITIMATE
10 classify_flow MALICIOUS
11 classify_flow LEGITIMATE
12 classify_flow MALICIOUS
13 classify_flow MALICIOUS

Features. Some features are based on values from the IPv4 header,
such as PSH and URG flags. Other features utilize values from the
TCP or UDP headers, such as destination port. Features also include
flow duration, packet count, and header length sum, the sum of the
length of headers of each packet of that flow. The initial window
is extracted from the window size field of the TCP header of the
first packet of a flow if the header is present. ACT Data Count is
the number of packets of that flow that had at least one byte of
payload.

Finally, we also calculate several metrics related to packet length,
calculated based on the number of bytes of each packet of that flow,
inter-arrival-time (IAT), the time elapsed between the arrival of
the previous packet of that flow and the next, at the current time,
and segment size, the length of the payload of each packet of that
flow. For these last three types of information, we calculate total,
minimum, maximum and mean values, resulting in 12 features. In
total, our system currently supports twenty features (Table 3).

Table 3: Features implemented

Destination Port
Flow Duration
Packet Count

Header Length Sum
Initial Window
ACT Data Count
PSH Flag CountURG

Packet Length

Total
Minimum
Maximum
Mean

Inter-Arrival-Time

Total
Minimum
Maximum
Mean

Segment Size

Total
Minimum
Maximum
Mean

Approximating Means. As programmable switches must ensure line-
rate processing, the time budget to process each packet is restricted.

	350

	400

	450

	500

	550

	600

	20 	40 	60 	80 	100 	120 	140

M
ea

n	
Va

lu
e

Number	of	Values

Approximate	mean
Exponential	mean

Exact	mean

Figure 3: Mean values for different approaches.

Due to the complexity of the division operation, the P4 language
does not support divisions. Thus, calculating the average values is
not a trivial task, as it requires the computation of the division of
a sum by its number of elements. Due to this restriction, existing
work [18] typically relies on Exponentially Weighted Moving Av-
erages (EWMA), by setting a weight of 1

𝑛 , with 𝑛 being a power
of two, so that it can be simulated with bit-shifts. In order to min-
imize the difference between the computed approximation and
the real moving average, we implemented a new technique to be
employed in lieu of EWMA. Considering the other implemented
features, our algorithm requires only a single additional value to
be computed and stored. The computation of the moving average
differs depending on the number of elements, 𝑖 - if 𝑖 is a power
of two, we can calculate the exact division by utilizing bit-shifts.
However, in every other case, we calculate an auxiliary value, 𝑆𝑎 (𝑖),
as shown in Equation (3), based on the auxiliary value calculated in
the previous iteration and the approximate mean, (𝑀𝑎 (𝑖 − 1)) of the
previous iteration, along with the new value 𝑉 . The approximate
mean of this iteration is, then, calculated by dividing this auxil-
iary value (𝑆𝑎 (𝑖)) by the highest power of two that is lesser than
𝑖 , by utilizing bit-shifts. Finally, we define the approximated mean
as 𝑀𝑎 (𝑖) = 𝑆𝑎 (𝑖)

max 2𝑛≤𝑖, 𝑛∈N . Thus, for example, to approximate the
mean of 9 elements, we calculate 𝑆𝑎 (9) and divide it by 8, through
a bit-shift of 3 bits. To calculate 𝑆𝑎 (9), we must calculate 𝑆𝑎 (8), as
in the second case of Equation (3), and𝑀𝑎 (8), which can be done
by dividing 𝑆𝑎 (8) by 8. Fig. 3 compares the values calculated by
our implemented approach (approximate mean) and EWMA with
𝛼 = 0.5, where we can see the value calculated by our algorithm
being closer to the real value of the moving average.

𝑆𝑎 (𝑖) =

𝑁∑︁
𝑖=1

𝑉𝑖 , ∃𝑛 ∈ N, 2𝑛 = 𝑖

𝑆𝑎 (𝑖 − 1) −𝑀𝑎 (𝑖 − 1) +𝑉 , �𝑛 ∈ N, 2𝑛 = 𝑖

(3)

3.3.3 Online Classifier. This module is responsible for orchestrat-
ing the multiple Classification Trees that compose our Random
Forest in order to perform the classification of a network flow. The
online classifier is located in the ingress processing block of the
P4-enabled switch, where the logic for utilizing multiple classifi-
cation trees is done. The first step towards classifying a network
flow is to calculate the features to be used by the classification trees.
After requesting the computation of features, in order to efficiently
approximate means, we utilize an auxiliary match+action table with
static entries. Along with invoking this table, the online classifier

4

BACKORDERS: Using Random Forests to Detect DDoS Attacks in Programmable Data Planes EuroP4 ’22, December 9, 2022, Roma, Italy

is responsible for invoking the tables that compose the multiple
random forests. As the RF mapper module maps the trained RF into
several match+action tables per tree3, we must invoke multiple
match+action tables per classification tree. By separating nodes
into different match+action tables based on their depth, we ensure
that invoking the same table multiple times will never be necessary,
as only one node is evaluated for each level of the tree. This is done
because P4 does not allow the control block to invoke the same
table multiple times.

4 IMPLEMENTATION AND EVALUATION
This section presents the implementation and evaluation of BACK-
ORDERS. We first describe the prototype that was implemented.
Next, we present the methodology employed in the experiments
and the results. Finally, we perform a theoretical analysis of the
cost of different RF configurations.

4.1 Prototype
We utilized scikit-learn [9] to implement the RF trainer module. The
RF mapper generates JSON configuration files for the insertion of
trees and parts of P4 code for the definition of the multiple tables
that contain the trees. In the data plane, we utilized the P4 language
in order to implement the feature extractor and online classifier
modules on the BMv2 software switch. In order to calculate every
feature described in Section 3.3, we utilized 23 registers for values,
along with 5 registers to store the 5-tuple that defines a flow, Source
and Destination IP Addresses, Source and Destination Ports and
Protocol. In our prototype, we aimed to provide an implementation
for the calculation of every feature, regardless if it was utilized by
the inserted forest or not. Potential optimizations include tailoring
the set of features calculated for specific scenarios.

4.2 Methodology
In order to evaluate BACKORDERS, we utilized the CICIDS2017
dataset [14]. This dataset contains a large number of labeled flows
with over seventy features each. In particular, we utilized the subset
of samples collected on Wednesday, July 5, 2017. This subset con-
tains 692,703 labeled flows, with 440,031 flows labeled as legitimate,
corresponding to over 63.52% of the total number of flows. The re-
maining samples include five different types of slow DDoS attacks.
While the dataset contains over 70 features, we considered many
of them to be too complex to be implemented in a programmable
switch, and thus we selected a subset of features that were simpler
to implement in a P4-enabled switch, as described in Section 3.3.
As the algorithm for induction of Classification Trees automatically
tries to select the best features as early as possible in the process,
we simply provided the list of implemented features to each RF,
allowing the algorithm to detect and select the most significant
features. We compared random forests with 1, 3, 5, 7, and 9 trees,
and trees with a maximum depth of 3, 4, 5, 6, and 7 levels. Addition-
ally, we employed K-fold cross-validation with 5 folds per model,
averaging the F1-Score4 obtained with each fold.

3Implementing a decision tree within a single match+action table would require
packets to be resubmitted/recirculated, thus reducing throughput.
4F1-Score is a popular metric for measuring the efficacy ofML learners, which combines
precision and recall.

4.3 Evaluation Results
4.3.1 Learner Scores. We compare the F1-Score obtained by each
trained model, considering legitimate traffic as the positive class.
Fig. 4a shows the scores obtained by each model, where we can
see that every model has an F1-Score higher than 0.85, including
the forests with fewer trees and lower depth. We can also observe
that, by increasing the maximum depth, the trained forests obtain
a considerably increased F1-Score, even with a small number of
classifiers per forest. Thus, even a forest with a small number of
trees and limited maximum depth can obtain reasonable results.

	0.86
	0.88

	0.9
	0.92
	0.94
	0.96
	0.98

	1

1 3 5 7 9

F1
	S

co
re

Number	of	Trees

Depth	3
Depth	4
Depth	5
Depth	6
Depth	7

(a) Different RF configurations

	0.75

	0.8

	0.85

	0.9

	0.95

	7 	8 	9 	10 	11 	12

F1
	S
co
re

Number	of	Features

1	Tree,	Depth	7
3	Trees,	Depth	5
3	Trees,	Depth	7
7	Trees,	Depth	7
9	Trees,	Depth	7

(b) Subsets of features

Figure 4: F1-Scores.

Additionally, we have selected a few top-scoring combinations
from the previous experiment and performed further analysis based
on those configurations. In a first step, a hierarchical clustering of
features was done, in order to identify correlated or multicollinear
features. After selecting only one feature per cluster, we iteratively
aimed to identify and remove the least contributing feature from
the set of available features. In the results shown in Fig. 4b, we
notice that after a certain amount of features, adding more features
does not significantly increase the F1-Score of the examined models,
while sometimes decreasing it. Intuitively, this might be due to the
fact that not every feature has the same contribution to the model’s
predictive ability.

4.3.2 Scalability Analysis. As only one node is processed at each
level, the number of comparisons done by a tree is proportional
to its maximum depth. Thus, the number of comparisons done by
the random forest is limited by 𝑂 (𝑁𝑀), where 𝑁 is the number
of trees in the forest and𝑀 is the maximum depth of each forest.
Additionally, as each node is mapped into a single match+action
table entry, the number of match+action table entries used by each
tree is limited by 𝑂 (2𝑀), where 𝑀 is the maximum depth of the
tree. Thus, a random forest may take up to𝑂 (𝑁 (2𝑀)) match+action
table entries, where 𝑁 is the number of trees in the forest. In Table
4 we calculate the number of comparisons and match+action table
entries for a few example configurations. As each entry matches
on an exact key (the node’s ID), they can be mapped to SRAM.
Programmable switches tend to have a few tens of megabytes of
SRAM [18]. Therefore, even the largest RF would incur negligible
SRAM usage, as it would only take 1143 entries. Finally, as the
memory cost per monitored flow is proportional to the number of
features tracked for each flow, based on the results shown in Fig. 4b,
we can find a compromise between memory usage and accuracy of
the model.

5

EuroP4 ’22, December 9, 2022, Roma, Italy Bruno Coelho and Alberto Schaeffer-Filho

Table 4: Cost analysis of different RF configurations

Trees Max. Processing Total Table Total table
Depth per tree processing entries entries

1 6 6 6 63 63
7 7 7 127 127

3
5 5 15 31 93
6 6 18 63 189
7 7 21 127 381

5
5 5 25 31 155
6 6 30 63 315
7 7 35 127 635

9 6 6 54 63 567
7 7 63 127 1143

5 RELATEDWORK
In this section, we discuss related work that propose techniques
for detecting DoS and DDoS attacks in the data plane. Lapolli et
al. [6] detect DDoS attacks based on estimates of the entropy of
source and destination IP addresses. This approach assumes that
there will be a large number of attackers, but the effectiveness
for low-bandwidth attacks is unknown. Additionally, their system
can detect the occurrence of attacks but not classify traffic into
malicious or legitimate.

Simsek et al. [15] identify hosts from where DDoS attacks orig-
inate by detecting spoofing. Their work focuses on volumetric
attacks, that is, attacks with high-bandwidth volume and a massive
number of packets. Thus, slower DDoS attacks may be undetected
by such a system, whereas our proposed system can be used for
the detection of this type of attack.

Febro et al. [3] utilize deep packet inspection (DPI) to identify
DDoS attacks that target the SIP protocol in the application layer.
However, DPI is unable to handle encrypted traffic, which has
become very popular. Additionally, it is limited to DDoS attacks
that target SIP, whereas our proposed system can be used to detect
a wider range of attacks.

Musumeci et al. [8] utilize and compare several ML classifiers in
order to detect DDoS attacks. In their approach, statistical features
can be computed in the data plane, but an ML module is responsible
for the classification of traffic. ORACLE [7] utilizes the data plane
to extract per-flow features. These are used by an ML model in
the control plane in order to classify flows. While these systems
can calculate features in the data plane, their ML modules are not
implemented in the data plane. This introduces a longer delay before
classification, on top of the forwarding device not being able to
take any immediate action based on the classification.

pForest [18] implements several RF classifiers in the programmable
data plane. This system classifies network flows in order to detect
potential DDoS attacks. For mean values, which are more complex
to calculate, they replace the moving average with exponentially
weighted moving average, with a weight of 1

2 , which simplifies
the computation with the limited capabilities of programmable
switches. Despite their positive results, our proposed system uti-
lizes a single RF, diminishing resource usage. Additionally, our
proposed mechanism better approximates means with an algorith-
mic approximation of moving averages.

pHeavy [20] offloads decision trees to programmable switches
in order to detect heavy flows at line-rate. The decision trees are

trained with algorithms that reduce the imbalance in the distribu-
tion of classes, i.e., heavy and non-heavy flows. Further, pHeavy
utilizes several decision trees in succession in order to accurately
identify heavy flows. Similarly to our approach, pHeavy utilizes
registers to calculate and store features for each flow. However,
differently from our approach, pHeavy relies solely on decision
trees. Random Forests are more refined models, as they are an en-
semble of decision trees, being less prone to some of the issues that
decision trees are known for [5].

Planter [21, 22] is capable of offloading several machine learning
models into programmable network devices, including P4-enabled
switches. The framework supports a variety of machine learning
models, including Random Forests, XGBoost, K-Nearest Neighbors,
and Neural Networks. Planter supports alternative ways to encode
Random Forests (and decision trees) into programmable data plane
devices. The first way to encode is similar to our approach (and
the one in pForest [18]), while the second implementation requires
a table for each tree and for each feature. The authors provide
an evaluation of these alternative implementations, showing the
trade-offs between them.

Stat4 [4] is a P4 library capable of computing and tracking sta-
tistical values in programmable switches. The statistics computed
includemovingmeans, variance, standard deviation, and percentiles
of distributions. The authors show how features provided by the
library can be used to detect anomalous traffic, as well as identify
the recipient of said traffic. This can be used, for instance, to detect
a volumetric DDoS attack and identify its victim, but it is not able
by itself to differentiate between malicious and legitimate flows.
However, Stat4 could be used as a complementary library to our
approach, enabling the tracking of more advanced features to be
used by Random Forests implemented in the data plane.

6 CONCLUDING REMARKS
In this paper we presented BACKORDERS, a system for classifying
network flows in programmable data planes. Our system relies on
a Random Forest classifier, mapping its structure to match+action
tables to fit in a P4-enabled switch. Our system further calculates
features for each flow entirely in the data plane. These features are
utilized by the RF in order to provide a classification of network
flows, identifying whether they are legitimate or malicious flows.

We believe that this work shows that it is possible to utilize ma-
chine learning models in the data plane. By implementing a random
forest in the data plane, we can perform highly-accurate predic-
tions at line-rate, meeting the restrictions imposed by the limited
hardware of programmable switches. As future work, we plan on
evaluating the trade-off between implementing more features and
minimizing memory usage.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for the helpful feedback which
significantly improved the quality of this paper. This work was
financed in part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq
(grant #311276/2021-0), FAPERGS (grant #19/2551-0001645-0) and
FAPESP (grant #2020/05152-7 - PROFISSA, and grant #15/24494-8 -
BigCloud).

6

BACKORDERS: Using Random Forests to Detect DDoS Attacks in Programmable Data Planes EuroP4 ’22, December 9, 2022, Roma, Italy

REFERENCES
[1] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[2] Bruno L. Dalmazo, Jonatas A. Marques, Lucas R. Costa, Michel S. Bonfim, Ranyel-
son N. Carvalho, Anderson S. da Silva, Stenio Fernandes, Jacir L. Bordim, Ed-
uardo Alchieri, Alberto Schaeffer-Filho, Luciano Paschoal Gaspary, andWeverton
Cordeiro. 2021. A systematic review on distributed denial of service attack de-
fense mechanisms in programmable networks. International Journal of Network
Management 31, 6 (2021), e2163.

[3] Aldo Febro, Hannan Xiao, and Joseph Spring. 2019. Distributed SIP DDoS
Defense with P4. In 2019 IEEE Wireless Communications and Networking Con-
ference (WCNC) (Marrakesh, Morocco). IEEE Press, Marrakesh, Morocco, 1–8.
https://doi.org/10.1109/WCNC.2019.8885926

[4] Sam Gao, Mark Handley, and Stefano Vissicchio. 2021. Stats 101 in P4: Towards
In-Switch Anomaly Detection. In Proceedings of the Twentieth ACM Workshop on
Hot Topics in Networks (Virtual Event, United Kingdom) (HotNets ’21). Association
for Computing Machinery, New York, NY, USA, 84–90. https://doi.org/10.1145/
3484266.3487370

[5] Tin Kam Ho. 1995. Random Decision Forests. In Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition (Volume 1) - Volume 1
(ICDAR ’95). IEEE Computer Society, USA, 278.

[6] Ângelo C. Lapolli, J. Marques, and L. Gaspary. 2019. Offloading Real-time DDoS
Attack Detection to Programmable Data Planes. In 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). IEEE Press, Arlington, VA,
USA, 19–27.

[7] Sebastián Gómez Macías, Luciano Paschoal Gaspary, and Juan Felipe Botero.
2021. ORACLE: An Architecture for Collaboration of Data and Control Planes to
Detect DDoS Attacks. In 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE Press, Bordeaux, France, 962–967.

[8] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore. 2020. Machine-
learning-assisted DDoS attack detection with P4 language. In ICC 2020 - 2020 IEEE
International Conference on Communications (ICC). IEEE Press, Dublin, Ireland,
1–6. https://doi.org/10.1109/ICC40277.2020.9149043

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[10] Amit Praseed and P. Santhi Thilagam. 2021. Modelling Behavioural Dynamics for
Asymmetric Application Layer DDoS Detection. IEEE Transactions on Information
Forensics and Security 16 (2021), 617–626. https://doi.org/10.1109/TIFS.2020.

3017928
[11] J. R. Quinlan. 1987. Simplifying Decision Trees. Int. J. Man-Mach. Stud. 27, 3

(Sept. 1987), 221–234. https://doi.org/10.1016/S0020-7373(87)80053-6
[12] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.
[13] Anderson Santos Da Silva, Cristian Cleder Machado, Rodolfo Vebber Bisol, Lisan-

dro Zambenedetti Granville, and Alberto Schaeffer-Filho. 2015. Identification
and Selection of Flow Features for Accurate Traffic Classification in SDN. In 2015
IEEE 14th International Symposium on Network Computing and Applications. IEEE
Press, Cambridge, MA, USA, 134–141. https://doi.org/10.1109/NCA.2015.12

[14] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic Character-
ization. In ICISSP. INSTICC, SciTePress, Funchal, Madeira, Portugal, 108–116.
https://doi.org/10.5220/0006639801080116

[15] Goksel Simsek, Hakan Bostan, Alper Kaan Sarica, Egemen Sarikaya, Alperen
Keles, Pelin Angin, Hande Alemdar, and Ertan Onur. 2020. DroPPPP: A P4
Approach to Mitigating DoS Attacks in SDN. In Information Security Applications,
Ilsun You (Ed.). Springer International Publishing, Cham, 55–66.

[16] Nikhil Tripathi and Neminath Hubballi. 2021. Application Layer Denial-of-
Service Attacks and Defense Mechanisms: A Survey. ACM Comput. Surv. 54, 4,
Article 86 (may 2021), 33 pages. https://doi.org/10.1145/3448291

[17] Loïc D. Tsobdjou, Samuel Pierre, and Alejandro Quintero. 2022. An Online
Entropy-based DDoS Flooding Attack Detection Systemwith Dynamic Threshold.
IEEE Transactions on Network and Service Management 19, 2 (2022), 1679–1689.
https://doi.org/10.1109/TNSM.2022.3142254

[18] Coralie usse Grawitz, Roland Meier, Alexander Dietmüller, Tobias Bühler, and
Laurent Vanbever. 2019. pForest: In-Network Inference with Random Forests.
https://doi.org/10.48550/ARXIV.1909.05680

[19] Hua Wu, Tingzheng Chen, Ziling Shao, Guang Cheng, and Xiaoyan Hu. 2021.
Accurate and Fast Detection of DDoS Attacks in High-Speed Network with Asym-
metric Routing. In 2021 IEEE Global Communications Conference (GLOBECOM).
IEEE Press, Madrid, Spain, 1–6. https://doi.org/10.1109/GLOBECOM46510.2021.
9685794

[20] Xiaoquan Zhang, Lin Cui, Fung Po Tso, and Weijia Jia. 2021. pHeavy: Predicting
Heavy Flows in the Programmable Data Plane. IEEE Transactions on Network
and Service Management 18, 4 (2021), 4353–4364. https://doi.org/10.1109/TNSM.
2021.3094514

[21] Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Riyad Bensoussane, Shay
Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. 2022. Automating In-Network
Machine Learning. https://doi.org/10.48550/ARXIV.2205.08824

[22] Changgang Zheng and Noa Zilberman. 2021. Planter: Seeding Trees within
Switches. In Proceedings of the SIGCOMM ’21 Poster and Demo Sessions (Virtual
Event) (SIGCOMM ’21). Association for Computing Machinery, New York, NY,
USA, 12–14. https://doi.org/10.1145/3472716.3472846

7

https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/WCNC.2019.8885926
https://doi.org/10.1145/3484266.3487370
https://doi.org/10.1145/3484266.3487370
https://doi.org/10.1109/ICC40277.2020.9149043
https://doi.org/10.1109/TIFS.2020.3017928
https://doi.org/10.1109/TIFS.2020.3017928
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1109/NCA.2015.12
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1145/3448291
https://doi.org/10.1109/TNSM.2022.3142254
https://doi.org/10.48550/ARXIV.1909.05680
https://doi.org/10.1109/GLOBECOM46510.2021.9685794
https://doi.org/10.1109/GLOBECOM46510.2021.9685794
https://doi.org/10.1109/TNSM.2021.3094514
https://doi.org/10.1109/TNSM.2021.3094514
https://doi.org/10.48550/ARXIV.2205.08824
https://doi.org/10.1145/3472716.3472846

	Abstract
	1 Introduction
	2 Random Forests
	3 The BACKORDERS System for DDoS Detection in the Data Plane
	3.1 Approach Overview
	3.2 Random Forest Classification in the Data Plane
	3.3 BACKORDERS Architecture

	4 Implementation and Evaluation
	4.1 Prototype
	4.2 Methodology
	4.3 Evaluation Results

	5 Related Work
	6 Concluding Remarks
	Acknowledgments
	References

