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Abstract—Network Intrusion Detection Systems (NIDS) play
an important role as tools for identifying potential network
threats. In the context of ever-increasing traffic volume on com-
puter networks, flow-based NIDS arise as good solutions for
real-time traffic classification. In recent years, different flow-
based classifiers have been proposed using Machine Learning
(ML) algorithms. Nevertheless, classical ML-based classifiers
have some limitations. For instance, they require large amounts
of labeled data for training, which might be difficult to obtain.
Additionally, most ML-based classifiers are not capable of
domain adaptation, i.e., after being trained on an specific data
distribution, they are not general enough to be applied to other
related data distributions. And, finally, many of the models
inferred by these algorithms are black boxes, which do not
provide explainable results. To overcome these limitations, we
propose a new algorithm, called Energy-based Flow Classifier
(EFC). This anomaly-based classifier uses inverse statistics to
infer a statistical model based on labeled benign examples. We
show that EFC is capable of accurately performing binary flow
classification and is more adaptable to different data distributions
than classical ML-based classifiers. Given the positive results
obtained on three different datasets (CIDDS-001, CICIDS17 and
CICDDoS19), we consider EFC to be a promising algorithm to
perform robust flow-based traffic classification.

Index Terms—Flow-based network intrusion detection,
anomaly-based network intrusion detection, network flow classi-
fication, network intrusion detection systems, energy-based flow
classifier, inverse Potts model, domain adaptation.

I. INTRODUCTION

SYMANTEC’S Internet Security Threat Report [1] points
out a 56% increase in the number of Web attacks in 2019.

Network scans, denial of service, and brute force attacks are
among the most common threats. Such malicious activities
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threaten individuals and collective organizations such as public
health, financial, and government institutions. In this context,
Network Intrusion Detection Systems (NIDSs) play an impor-
tant role as tools for managing and identifying potential threats
in the network [2].

There are two main approaches for NIDSs regarding the
kind of data analyzed: packet-based and flow-based. In the for-
mer, deep packet inspection is performed, taking into account
individual packet payloads and header information [3]. In the
latter, flows, i.e., packet collections, are analyzed regarding
their properties, e.g., duration, number of packets, number
of bytes, and source/destination port [3]. To perform clas-
sification in real-time, a massive volume of data must be
analyzed, making deep packet inspection too costly to be
applied regarding processing and energy consumption. Since
flow-based approaches can classify the whole traffic inspect-
ing an equivalent to 0.1% of the total volume, NIDSs based
on flow analysis arise as good solutions for real-time traffic
classification [4]. Besides, with the advent of software-defined
networking and the virtualization of network functions, dis-
tributed security systems can take advantage of the spread
of NIDSs based on flow analysis to improve their security
management across the network [5].

In recent years, different flow-based classifiers have been
proposed based on both shallow and deep learning [6].
According to the report in [6], the best flow-based classi-
fiers achieve around 99% accuracy. Although quite accurate,
classical Machine Learning (ML)-based classifiers require
labeled malicious traffic samples to perform training. However,
real traffic labeling might be difficult, especially in the case
of malicious traffic [7]. Besides, ML-based classifiers after
trained on specific data distribution usually do not work well
when applied to other data with slightly different distributions,
i.e., they have low domain adaptation capability [8], [9], [10].
Such a capability is particularly important to the network con-
text since a standard procedure is to perform the training of
classifiers with simulated data and, afterward, apply in real
scenarios that change the data distribution requiring domain
adaptation. Moreover, most ML algorithms are well-known to
be black-box mechanisms, challenging to be understood and
readjusted in detail [11], [12]. In this regard, there is a clear
need for a new flow-based classifier for NIDSs, which gen-
erates an understandable model (white box) based solely on
benign examples, and adaptable to different domains.

In this work, we propose a novel classifier called Energy-
based Flow Classifier (EFC), which is inspired by the inverse
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Potts model from quantum mechanics and adapted to network
flow classification. EFC performs one-class, anomaly-based
classification, i.e., as long as it can learn the properties
of benign flows, it will discriminate between benign and
malicious flows. Moreover, it is a white box algorithm, pro-
ducing a statistical model that can be analyzed in detail
regarding individual parameter values. Here, we compared the
performance of EFC against a variety of classifiers using three
different datasets, i.e., CIDDS-001 [13], CICIDS17 [14], and
CICDDoS19 [15]. Our results show that EFC’s performance is
comparable to the performance of the other classifiers. Also,
we observed that EFC is less sensitive to changes in data
distribution than the others. Our main contributions are:

• The proposal and implementation of a flow classifier
based on the inverse Potts model to be employed in
NIDSs;

• A performance comparison of the proposed classifier
with classical ML-based classifiers using three different
datasets;

• An analysis of how different classifiers perform when
trained within one domain and tested in another related
domain.

The rest of this paper is structured as follows. In Section II,
we briefly present the state-of-the-art in flow-based NIDSs.
In Section III, we describe the structure of network flows
with a preliminary analysis of the datasets considered here.
In Section IV, we introduce the statistical model proposed
and the classifier implementation. In Section V, we present
the results obtained regarding the statistical model’s analy-
sis and the classification experiments performed. Finally, in
Section VI, we present our conclusions and future work.

II. RELATED WORK

In this section, we first briefly review the state-of-the-art
in flow-based network intrusion detection systems. In the fol-
lowing, some previous work on CIDDS-001, CICIDS17, and
CICDDoS19 are shown to highlight their relevance as up-to-
date datasets to be used in our experiments. Finally, some
challenges of ML-based traffic classification are regarded, such
as the difficulty in obtaining sufficient labeled data, the non-
interpretability of models, and the difficulty in adapting to
different domains (data distributions).

Several ML-based classifiers have been explored
over the last years for network intrusion detection.
Vinayakumar et al. (2017) [16], Mahfouz et al. (2020) [17]
and Khan et al. (2020) [18] independently evaluated the
performance of different ML-based classifiers over Internet
traffic datasets. In [16], the KDDCup’99 and NSL-KDD
datasets are regarded to evaluate the performance of both
shallow and deep learning-based classifiers. It is shown that
deep learning-based approaches performed better to differ-
entiate malicious attacks from benign traffic. Meanwhile,
the authors of [17] considered the NSL-KDD dataset to
compare the performance of different shallow learning-based
classifiers. The classifier that presented the best performance
without feature selection was the Decision Tree (DT). With
feature selection, K-Nearest Neighbors (KNN) performed

better to classify malicious traffic. Finally, the authors of [18]
compared the performance of a few different classifiers over
the UNSW-NB15 dataset. They observed that Random Forest
(RF) overperformed all other classifiers. In fact, RF has been
used in several recent NIDSs [19], [20], [21]. All of the
aforementioned works use the F1-score as a metric to assess
the performance of the different classifiers. In the present
work, we consider both deep and shallow learning-based
classifiers as baselines to assess EFC’s performance over
three different datasets, regarding the F1-score as one of the
evaluation metrics.

To assess EFC’s performance, one of the datasets we use
is CIDDS-001. This dataset was used by Verma and Ranga
(2018) [22] to assess the performance of KNN and k-means
clustering algorithms. Both algorithms achieved over 99%
accuracy. Also, Ring et al. [23] explored slow port scans detec-
tion using CIDDS-001. The approach proposed by them is
capable of accurately recognizing the attacks with a low false
alarm rate. Finally, Abdulhammed et al. [24] also performed
classification based on flows on CIDDS-001 and proposed an
approach that is robust considering imbalanced network traffic.
In summary, CIDDS-001 is an updated and relevant dataset to
be used for network flow-classification solutions, being one of
our dataset choices for assessing the performance of EFC.

The other two datasets considered here are CICIDS17
and CICDDoS19, from the Canadian Institute for Cyber
Security. Recently, Yulianto et al. [25] used CICIDS17
to assess the performance of an Adaboost-based classifier.
Aksu et al. [26] did the same in 2018 with different ML classi-
fiers. CICIDS17 contains benign as well as the most up-to-date
common attacks, resembling true real-world data, being a rel-
evant dataset to consider for flow-based traffic classification.
Meanwhile, CICDDoS19 is a very recent dataset with a focus
on DDoS attacks. Reference [27] proposes a real-time entropy-
based NIDS for detection of volumetric DDoS in Internet of
Things (IoT) and performs tests over CICDDoS19 dataset,
among other datasets. Another recent work [28] obtained over
99% accuracy over CICDDoS19 dataset using a Convolutional
Neural Network (CNN). And, finally, Novaes et al. [29]
proposed a system for intrusion detection based on fuzzy logic,
which had its performance assessed on CICDDoS19. The ris-
ing popularity of this dataset serves as evidence of its relevance
to assess the performance of different NIDS. Hence, we use
CICIDS17 and CICDDoS19 datasets to test our classifier and
compare it to the performance of classical ML classifiers.

Umer et al. (2017) [6] performed a comprehensive litera-
ture survey on flow-based network intrusion detection. In their
work, some disadvantages of using ML-based classifiers for
traffic classification are mentioned. Among them are the high
computational cost of training the classifiers, the difficulty in
obtaining representative datasets, and the high false positive
rates observed. The present work addresses some of the issues
mentioned, since the classifier proposed here has a low compu-
tational cost and learns exclusively based on benign samples.
In the following, these and some other issues are discussed in
further detail.

One of the commonly discussed issues in the field of ML
is the tight dependency most algorithms have on the amount
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of labeled samples available for training [7], which might be
difficult to obtain in some contexts. For instance, it is difficult
to obtain malicious traffic samples and to label it in the real
world and this is why most of the network intrusion detection
datasets contain simulated attacks. This issue makes it difficult
to train intrusion detection algorithms in such a way that they
might be able to detect zero-day threats [7]. The only way of
possibly detecting a zero-day attack is relying on an anomaly-
based classifier [30], such as the one we propose in this work.
EFC, has a great advantage over other ML-based algorithms,
which is the capability to infer a model based solely on benign
traffic samples, i.e., half of the information. Such capability
can be used to circumvent the problem of obtaining a high
amount of data and the labeling of malicious samples.

Another common problem in ML is that inferred mod-
els lose their predictive performance when tested in different
domains (data distributions) [10]. In the field of network secu-
rity, this adaptability is specially important given the existence
of zero-day threats and the artificiality of most datasets used
for research. In [10], there is an interesting discussion about
the existing differences between datasets used by academics to
test NIDSs and the network traffic observed in the real world.
Additionally, the work of Bartos et al. [8] and Li et al. [9] also
address this issue. They propose similar approaches, apply-
ing data transformations to the data to reduce differences
between data distributions in different domains. In our work,
we propose a classifier that is intrinsically adaptable to dif-
ferent domains, since the model inference is based solely on
benign samples. Therefore, there is no need to transform the
data in order to adapt the model or perform adjustments to
a different domain, making our approach simpler and more
straightforward.

Finally, another big issue in ML is the non-interpretability of
some models [11], [12]. Artificial Neural Networks (ANNs),
in special, became more and more opaque with time, despite
overperforming other approaches in many tasks. The authors
of [12] highlight that the best ML algorithms are not inter-
pretable, hence the decision taken by them can not be
explained. However, different contexts require transparent
decision making and that is why the development of explain-
able models is so important. The authors of [11] call attention
to the fact that trying to explain black box models might not
be the best approach to solve the issue of non-interpretability.
Instead, it is suggested the design of new models that are inher-
ently interpretable. In line with what has been suggested by
these recent studies, EFC generates a white-box model and,
therefore, satisfies the requirement of providing explainable
results, allowing classification results to be analysed in retro-
spect if needed. Thus, next, we introduce main concepts and
intuitions to serve as basis for EFC.

III. BACKGROUND AND DATASETS

In this section, we present some fundamental concepts to
understand flow-based network intrusion detection. First, the
concept of network flow and its features are introduced. In
the following, the three Internet flow datasets used in this
work are presented and described in detail to provide concrete

examples of features and contextualize the experimental results
presented in Section V. The information provided in this
section serves as a basis to understand how EFC works.

A network flow is a set of packets that traverses interme-
diary nodes between end-points within a given time interval.
Under the perspective of an intermediary node, i.e., an obser-
vation point, all packets belonging to a given flow have a set of
common features called flow keys. It means that flow keys do
not change for packets belonging to the same flow, while the
remaining features might vary. FlowScan [31] is an example
of a tool capable of collecting data from a set of packets and
extracting flow features to be later exported in different for-
mats, such as NetFlow and IPFIX. Since NetFlow is the most
commonly used format, its main features are listed below:

• Source/Destination IP (flow keys) - determine the origin
and destination of a given flow in the network;

• Source/Destination port (flow keys) - characterize differ-
ent kinds of network services, e.g., ssh service uses port
22;

• Protocol (flow key) - characterizes flows regarding the
transport protocol used, e.g., TCP, UDP, ICMP.

• Number of packets (feature) - total number of packets
captured in a flow;

• Number of bytes (feature) - total number of bytes in a
flow;

• Duration (feature) - total duration of a flow in seconds;
• Initial timestamp (feature) - system time when one flow

started to be captured.
Other features such as TCP Flags and Type of Service might
also be exported in some cases. The combination of different
flow keys and features characterize one flow and determine its
particular behavior.

Flow-based approaches are seen as suitable alternatives to
precede packet inspection in real-time NIDSs. The idea is to
deeply inspect only the packets belonging to flows consid-
ered to be suspicious by the flow-based classifier. A two-step
approach would notably reduce the amount of data analyzed
while maintaining a high classification accuracy [4]. In this
work, we are only concerned with the first step, which is the
flow classification. We evaluate the performance of our algo-
rithm, the EFC, compared to other ML algorithms using three
different datasets. We also evaluate the performance of the
algorithms by training with data from part of the dataset and
testing with other parts of it. Nonetheless, although both parts
of the data come from the same dataset, their distributions are
different to characterize domain adaptation. In the following,
we briefly describe the datasets used for testing and characterize
what constitutes a domain adaptation in each of them.

A. CIDDS-001

CIDDS-001 [13] is a relatively recent dataset composed of
a set of flow samples captured within a simulated OpenStack
environment and another set of flow samples obtained from a
real server. The former contains only simulated traffic, while
the latter includes both real and simulated traffic. Each sample
collected within these two environments has one of the labels
described in Table I.
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TABLE I
LABELS WITHIN CIDDS-001 DATASET

TABLE II
FEATURES WITHIN CIDDS-001 DATASET

Simulated benign flows are labeled as normal, while simu-
lated malicious flows are labeled as dos, portScan, pingScan
or bruteForce, depending on the type of attack simulated. The
labels suspicious and unknown, in turn, are used for real traf-
fic. The external server is open to user access through the ports
80 and 443. Hence, flows directed at these ports were labeled
as unknown, since they could be either benign or malicious.
All flows directed at other ports were labeled as suspicious.
Traffic was sampled in both the simulated and the external
server environment for a period of four weeks. Within this
dataset, a change from the simulated data distribution to the
external server data distribution is a domain change, requiring
the classifiers to adapt.

CIDDS-001 dataset flow features are shown in Table II.
All features were taken into account for characterization and
classification except for Src IP, Dest IP and Date first seen.
These exceptions are because the latter one is intrinsically
not informative to differentiate flows, and the former two are
made up in the context of the simulated network and might
be confounding.

B. CICIDS17

CICIDS17 [14] dataset contains benign traffic and the most
up-to-date common attacks, resembling real-world data. This
dataset was built using the abstract behavior of 25 users
based on the HTTP, HTTPS, FTP, SSH, and e-mail protocols.
The data was captured during one week in July 2017. The
attacks implemented include Brute Force FTP, Brute Force
SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet, and
DDoS. They were executed both morning and afternoon on
Tuesday, Wednesday, Thursday, and Friday (see Table III).

Flow features on this dataset were extracted using
CICFlowMeter [32]. There are in total 88 features, which are
not going to be cited here because of the limited space. All

TABLE III
ATTACKS WITHIN CICIDS17 DATASET

TABLE IV
ATTACKS WITHIN CICDDOS19 DATASET

features were considered here, except for Flow ID, Source IP,
Destination IP, and Timestamp. These exceptions were made
because the features were either intrinsically not informative
or made up within a simulated environment.

C. CICDDoS19

CICDDoS19 [15] contains benign traffic and the most up-to-
date common DDoS attacks (volumetric and application: low
volume, slow rate), resembling real-world data. This dataset
contains different modern reflective DDoS attacks such as
PortMap, NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, SYN,
NTP, DNS, and SNMP. The traffic was captured in January
(first day) and March (second day), 2019. Attacks were
executed during this period (see Table IV).

Flow features on this dataset were extracted using
CICFlowMeter [32]. All features were considered here, except
for Flow Id, Source IP, Destination IP, and Timestamp.
These exceptions were made because the features were either
intrinsically not informative or made up within a simulated
environment.

Considering each concept regarding network flows, their
features, and how they are presented across different datasets,
serve as basis to introduce the main intuition behind EFC,
such as presented next.

IV. PROPOSAL

EFC is based on inverse statistics. The main task of inverse
statistics is to infer a statistical distribution based on a sample
of it [33]. Methods using inverse statistics have been success-
fully applied to problems in other disciplines, e.g., predicting
protein contacts in Biophysics [33], [34]. Here, the statisti-
cal inference is based on the Potts model [35]. This model
provides a mathematical description of interacting spins on
a crystalline lattice. Within the model framework, interacting
spins are mapped into a graph G(η, ε) [see Figure 1 A)], where
each node i ∈ η = {1, . . . ,N } has an associated spin ai ,
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Fig. 1. A) Interacting spins on a crystalline lattice. B) Network flow mapped
into a graph structure.

which can assume one value from a set Ω that contains all
possible individual quantum states. Each node i has also an
associated local field hi (ai ) that is a function of ai ’s state.
Meanwhile, each edge (i , j ) ∈ ε, i , j ∈ η, has an associated
coupling value eij (ai , aj ) that is a function of the states of
spins ai and aj associated to nodes i and j. A specific system
configuration has an associated total energy, determined by
the Hamiltonian function H (a1 · · · aN ), which depends on
all spin states.

In this work, we reuse the intuitions from the Potts model
to characterize network flows [see Figure 1 B)]. An individ-
ual flow k is represented by a specific graph configuration
Gk (η, ε). Instead of spins, each node represents a selected
feature i ∈ η = {SrcPort , . . . ,Flags}. Within a given flow k,
each feature i assumes one value aki from the set Ωi that con-
tains all possible values for this feature. As in the Potts Model,
each feature i has an associated local field hi (aki ). Meanwhile,
ε = {(i , j )|i , j ∈ η; i �= j} is the set of edges determined by
all possible pairs of features, creating a fully meshed graph
that can represent different flow samples through their com-
mon features. Each edge has an associated coupling value
determined by the function eij (aki , akj ).

Since the values of local fields and couplings depend on the
values assumed by features within a given flow, each distinct
flow will have a different combination of these quantities. As
in the Potts Model, the Hamiltonian involving local fields and
couplings determines the total “energy” H (ak1 · · · akN) of
each flow. For instance, in Figure 1 B), the total “energy”
of the flow is obtained by summing up all values associated
with the edges and to the nodes, resulting in a total of −3.
Note that what we call energy is analogous to the notion of
Hamiltonian in Quantum Mechanics. It is important to note
that the model described here is discrete, therefore continuous
features must be discretized. The classes for continuous feature
discretization are shown in Section V. In the following, we
present the framework applied to perform the statistical model
inference and subsequent energy-based flow classification.

A. Model Inference

In this section, a statistical model is going to be inferred in
terms of couplings and local field values to perform energy-
based flow classification. The main idea consists in extracting
a statistical model from benign flow samples to infer coupling
and local field values that characterize this type of traffic.

When calculating the energies of unlabeled flows using the
inferred values, it is expected that benign flows will have lower
energies than malicious flows.

Let (A1 · · ·AN) be an N-tuple of features, which can
be instantiated for flow k as (ak1 · · · akN), with ak1 ∈
Ω1, . . . , akN ∈ ΩN. Each feature value aki is encoded by
an integer from the set Ω = {1, 2, . . . ,Q}, i.e., all feature
alphabets are the same Ωi = Ω of size Q. If a given feature
can only assume M values and M < Q, it is considered that
values M + 1, . . . ,Q are possible, but will never be observed
empirically. For instance, if the only possible values for fea-
ture protocol are {‘TCP’, ‘UDP’}, and given Q = 4. In this
case, we would have the mapping {’TCP’:1, ’UDP’:2, ’ ’:3, ’
’:4} and feature values 3 and 4 would never occur.

Now, let K be the set of all possible flows, i.e., all pos-
sible combinations of feature values (K = ΩN ), and let
S ⊂ K be a sample of flows. We can use inverse statistical
physics to infer a statistical model associating a probability
P(ak1 · · · akN) to each flow k ∈ K based on sample S . The
global statistical model P is inferred following the Entropy
Maximization Principle [36]:

max
P
−

∑

k∈K

P(ak1 · · · akN)log(P(ak1 · · · akN)) (1)

s.t .
∑

k∈K |aki=ai

P(ak1 · · · akN) = fi (ai ) (2)

∀i ∈ η; ∀ai ∈ Ω;∑

k∈K |aki=ai ,akj =aj

P(ak1 · · · akN) = fij
(
ai , aj

)

∀(i , j ) ∈ η2|i �= j ; ∀(ai , aj
) ∈ Ω2; (3)

where fi (ai ) is the empirical frequency of value ai on feature
i and fij (ai , aj ) is the empirical joint frequency of the pair
of values (ai , aj ) of features i and j. Note that constraints (2)
and (3) force model P to generate single as well as joint
empirical frequency counts as marginals. This way, the model
is sure to be coherent with empirical data.

Single and joint empirical frequencies fi (ai ) and fij (ai , aj )
are obtained from set S by counting occurrences of a given
feature value ai or feature value pair (ai , aj ), respectively, and
dividing by the total number of flows in S . Since the set S
is finite and much smaller than K , inferences based on S are
subjected to undersampling effects. Following the theoretical
framework proposed in [34], we add pseudocounts to empirical
frequencies to limit undersampling effects by performing the
following operations:

fi (ai ) ← (1− α)fi (ai ) +
α

Q
(4)

fij
(
ai , aj

) ← (1− α)fij
(
ai , aj

)
+

α

Q2
(5)

where (ai , aj ) ∈ Ω2 and 0 ≤ α ≤ 1 is a parameter defining the
weight of the pseudocounts. The introduction of pseudocounts
is equivalent to assuming that S is extended with a fraction
of flows with uniformly sampled features.

The proposed maximization can be solved using a
Lagrangian function such as presented in [36], yielding the
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following Boltzmann-like distribution:

P∗(ak1 · · · akN) =
e−H (ak1···akN)

Z
(6)

where

H (ak1 · · · akN) = −
∑

i ,j |i<j

eij
(
aki , akj

)−
∑

i

hi (aki ) (7)

is the Hamiltonian of flow k and Z (eq. (6)) is the parti-
tion function that normalizes the distribution. Since in this
work we are not interested in obtaining individual flow
probabilities, Z is not required and, as a consequence, its
calculation is omitted. Our objective is to calculate individ-
ual flows energies, i.e., individual Hamiltonians as determined
in eq. (7).

Note that the Hamiltonian, as presented above, is fully
determined regarding the Lagrange multipliers eij (·) and hi (·)
associated to constraints (2) and (3), respectively. Within the
Potts Model framework, the Lagrange multipliers have a spe-
cial meaning, with the set {eij (ai , aj )|(ai , aj ) ∈ Ω2} being
the set of all possible coupling values between features i and j
and {hi (ai )|ai ∈ Ω} the set of possible local fields associated
to feature i.

Inferring the local fields and pairwise couplings is diffi-
cult since the number of parameters exceeds the number of
independent constraints. Due to the physical properties of
interacting spins, it is possible to infer pairwise coupling val-
ues eij (ai , aj ) using a Gaussian approximation. Assuming that
the same properties apply for flow features, we infer coupling
values as follows:

eij
(
ai , aj

)
= −(

C−1
)
ij

(
ai , aj

)
,

∀(i , j ) ∈ η2,∀(ai , aj
) ∈ Ω2, ai , aj �= Q (8)

where

Cij
(
ai , aj

)
= fij

(
ai , aj

)− fi (ai )fj
(
aj

)
(9)

is the covariance matrix obtained from single and joint empir-
ical frequencies. Taking the inverse of the covariance matrix
is a well known procedure in statistics to remove the effect of
indirect correlation in data [37]. Now, it is important to clar-
ify that the number of independent constraints in eq. (2) and
eq. (3) is actually N (N−1)

2 (Q−1)2 +N (Q−1), even though

the model in eq. (6) has N (N−1)
2 Q2 + NQ parameters. So,

without loss of generality, we set:

ei ,j (ai ,Q) = ei ,j
(
Q , aj

)
= hi (Q) = 0 (10)

Thus, in eq. (8) there is no need to calculate ei ,j (ai , aj )in case
ai or aj is equal to Q [34]. Afterwards, local fields hi (ai ) can
be inferred using a mean-field approximation [38]:

fi (ai )
fi (Q)

= exp

⎛

⎝hi (ai ) +
∑

j ,aj

eij
(
ai , aj

)
fj

(
aj

)
⎞

⎠,

∀i ∈ η, ai ∈ Ω, ai �= Q (11)

where fi (Q) is the frequency of the last element ai = Q for
any feature i used for normalization. It is also worth men-
tioning that the element Q is arbitrarily selected and could be

replaced by any other value in {1. . . Q} as long as the selected
element is kept the same for calculations of the local fields of
every feature i ∈ η. Note that in eq. (11) the empirical sin-
gle frequencies fi (ai ) and the coupling values eij (ai , aj ) are
known, yielding:

hi (ai ) = ln
(

fi (ai )
fi (Q)

)
−

∑

j ,aj

eij
(
ai , aj

)
fj

(
aj

)
(12)

In the mean-field approximation presented above, the
interaction of a feature with its neighbors is replaced by an
approximate interaction with an averaged feature, yielding an
approximated value for the local field associated to it.

For further details about these calculations, please refer
to [33]. Now that all model parameters are known, it is possi-
ble to calculate a given flow energy according to eq. (7). In the
following, we are going to present the theoretical framework
implementation to perform a two-class, i.e., benign and mali-
cious, flow classification, i.e., Energy-based flow classification
(EFC).

B. Energy-Based Flow Classification

The energy of a given flow can be calculated according to
eq. (7) based on the values of its features and the parameters
from the statistical model inferred in Section IV-A. A given
flow energy is the negative sum of couplings and local fields
associated with its features, according to a given statistical
model. It means that a flow that resembles the ones used to
infer the model is likely to be low in energy.

Since EFC is an anomaly-based classifier, the statistical
model used for classification is inferred based only on benign
flow samples. We would then expect the energies of benign
samples to be lower than the energies of malicious samples.
In other words, what the energy value of a given flow is cap-
turing is how dissimilar that flow is to a set of known benign
flows used to infer the model in the training phase. In terms
of frequencies, this means that, if a given flow presents fea-
ture values combinations that are very frequent in benign flow
samples, its energy will be low. In this sense, it is possible
to classify flow samples as benign or malicious based on a
chosen energy threshold. The classification is performed by
stating that samples with energy smaller than the threshold
are benign, and samples with energy greater than or equal to
the threshold are malicious. Note that the threshold for clas-
sification can be chosen in different ways, and it can be static
or dynamic. In this work, we will consider a static threshold.

Algorithm 1 shows the implementation of EFC. In lines
2-5, the statistical model for the sampled flows is inferred, as
described by eqs. (4), (5), (8) and (12). Afterward, on lines
6-27, the classifier monitors the network waiting for a captured
flow. When a flow is captured, its energy is calculated on lines
9-20, according to the Hamiltonian in eq. (7). The computed
flow energy is compared to a known threshold (cutoff ) value
on line 21. In case the energy falls above the threshold, the
flow is classified as malicious and should be forwarded to deep
packet inspection (line 23) for assessment. Otherwise, the flow
is released, and the classifier waits for another flow.
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Algorithm 1 Energy-Based Flow Classifier
Input: benign_flows(K×N ), Q, α, cutoff

1: import all model inference functions
2: f _i ← SiteFreq(benign_flows,Q , α)
3: f _ij ← PairFreq(benign_flows, f _i ,Q , α)
4: e_ij ← Couplings(f _i , f _ij ,Q)
5: h_i ← LocalFields(e_ij , f _i ,Q)
6: while Scanning the Network do
7: flow ← wait_for_incoming_flow()
8: e ← 0
9: for i ← 1 to N − 1 do

10: a_i ← flow [i ]
11: for j ← i + 1 to N do
12: a_j ← flow [j ]
13: if a_i �= Q and a_j �= Q then
14: e ← e − e_ij [i , a_i , j , a_j ]
15: end if
16: end for
17: if a_i �= Q then
18: e ← e − h_i [i , a_i ]
19: end if
20: end for
21: if e ≥ cutoff then
22: stop_flow()
23: forward_to_DPI()
24: else
25: release_flow()
26: end if
27: end while

It is essential to highlight that the time complexity of the
training step of EFC is O((M ×Q)3 +N ×M 2×Q2), where
N is the number of samples, M is the number of features, and
Q is the size of the alphabet. Meanwhile, the complexity of the
classification step for each sample is O(M 2). It means that, in
both steps, the complexity is more dependant on the number
of features chosen, which can be kept small by using a fea-
ture selection mechanism, e.g., Principal Component Analysis
(PCA). However, we do not currently explore any feature
selection mechanisms because we consider it to be out of scope
of this work, in which the main aim is only to present a first
version of our newly proposed classifier for NIDS.

EFC has a low training cost, linear in the number of samples
(N ), when compared to some ML-based classifiers, such as
Adaboost (AB), Random Forest (RF), Support Vector Machine
(SVM), and Multi-Layer Perceptron (MLP) [39]. EFC’s train-
ing complexity is considered to be dominated by the term
NM 2Q2 because the number of training samples is expected
to be much bigger than both the number of features M and
the size of the alphabet Q, which means that the term (MQ)3

is likely not dominant over NM 2Q2. Figure 2 shows a com-
parative analysis of training and testing runtimes of different
ML-based classifiers and EFC performed on the CIDDS-001
dataset. A Cython implementation of EFC1 was compared to

1EFC - https://cyberseclab.gigacandanga.net.br/CyberSecLab/one-class-efc

Fig. 2. Training and testing runtimes of different ML-based classifiers (scikit-
learn implementation) and EFC (Cython implementation) over the CIDDS-001
dataset.

the scikit-learn2 implementation of the other classifiers in a
Ubuntu 20.04 OS using a single thread. The MLP and the
SVM classifiers were omitted from the plot for visualization
purposes, since their training time complexity is not linear on
the number of samples. The results obtained are consistent
with the analytical complexity analysis.

Considering the implementation shown in this section, in
the following we present the results obtained using EFC and
ML-algorithms in classification experiments.

V. RESULTS

In this section, we present the results obtained for EFC and
ML-based classifiers in different binary classification exper-
iments considering three different datasets, i.e., CIDDS-001,
CICIDS17, and CICDDoS19. First, we show that EFC can
separate benign from malicious flows based on their energies,
a result that is consistent for all considered datasets. Then, we
present EFC’s classification performance and compare it to the
classification performance of ML-based classifiers in different
experiments.

It is important to highlight that the classification experi-
ments we perform in this work were designed not only to
assess the performance of different classifiers but also to inves-
tigate their capability of adaptation to different domains, i.e.,
data distributions. Hence, we performed two kinds of experi-
ments: training/testing in the same domain, and training/testing
in different domains. For training/testing in the same domain,
in each experiment, we assessed the average performance of
the classifiers over ten different test sets, containing 10,000
benign and 10,000 malicious samples each, randomly selected
from the full dataset. Models were inferred based on 80% the
test set and tested on the remaining 20%. The inferred models
were used for each experiment to assess the performance of
the classifiers over another ten test sets composed of 2,000
benign and 2,000 malicious samples from another domain
(data distribution).

A. EFC Characterization

To assess EFC capabilities to separate benign from mali-
cious traffic flow samples correctly, we performed classifica-
tion experiments considering datasets CIDDS-001, CICIDS17
and CICDDoS19. First, we inferred models based on benign

2Scikit-learn library - https://scikit-learn.org
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Fig. 3. Energy histograms of benign (n = 20,000 in each plot) and malicious (n = 20,000 in each plot) flow samples obtained in the testing phase of a
classification experiment performed over the CIDDS-001 dataset (A), CICIDS17 (B) and CICDDoS19 (C) datasets. The energy threshold for classification is
shown as a red dashed line and corresponds to the 95th percentile of the energy distribution obtained in the training phase.

samples from the OpenStack (simulated) environment within
the CIDDS-001 dataset. This models were used to calculate the
energy of different benign and malicious flow samples coming
also from the simulated traffic. Figure 3A shows energy val-
ues of 40,000 classified flow samples, a merge of the results
obtained over ten randomly sampled test sets, as described in
the last paragraph of the previous section. The statistical model
used to calculate the energies in each test set was inferred
based on 8,000 benign flows randomly sampled from the sim-
ulated traffic. Flow samples with energy values falling above
the energy cutoff, defined as the 95th percentile of the benign
traffic training distribution (red dashed line), would be clas-
sified as malicious, while the remaining samples would be
classified as benign. It is possible to observe that the sepa-
ration between the two flow classes is clear, i.e., the energy
distribution of tested benign flows falls mostly on the left side
of the cutoff line, while the energy distribution of tested mali-
cious flows falls mostly on the right side of the cutoff line, as
expected.

Figures 3B–C shows the results of analogous experiments
performed on the remaining two datasets. Similarly to what
is observed for CIDDS-001, when trained on CICIDS17,
EFC is also capable of clearly separating the two classes
(Figure 3B). This means that the benign energy histogram
of tested samples falls mostly on the left side of the cut-
off line (95th percentile of the training distribution), while
the malicious energy histogram of tested samples falls mainly
on the right side of the cutoff line. Again, the same result
can be observed for dataset CICDDoS19 (Figure 3C). It
is interesting to observe that, although the benign flows
energy histograms looks similar regarding variance for the
three datasets, the malicious flows energy histogram varies.
In CIDDS-001, it has very low variance, reflecting the fact
that this dataset contain only four classes of attacks and
is highly imbalanced, while in CICIDS17 and CICDDoS19,
malicious energy histograms have a broader spread, reflecting
the greater variability of malicious flows that exists in those
datasets.

The white box nature of the statistical model inferred by
EFC is demonstrated in Figure 4, where the energy of different
attack classes is broken down to the individual contributions
of each pair of features. As shown, for a given attack class,

it is possible to identify which combination of features is
contributing the most to its abnormality (red squares) and
which pairs of features are similar to normal traffic (blue
squares) and might be confounding the model. This analy-
sis was done considering only the couplings and not the local
fields. It is interesting to note that different kinds of attacks
are characterized by different combinations of abnormal fea-
ture pairs, as expected. For instance, the most abnormal thing
about DoS attacks is the combination of number of pack-
ets and duration, which is consistent with spoofed source
address flooding attacks. In turn, Port Scan attacks present
an abnormal combination of source and destination ports, in
contrast with packets and duration, which are exceedingly
normal. Ping Scan attacks are characterized by the protocol
ICMP coupled with smaller than usual duration and number
of packets, an abnormal combination of source and destina-
tion ports, and the absence of flags coupled with a small
number of bytes. As for Brute Force, the abnormal cou-
pling between source and destination ports is consistent with
unvarying destination and evolving source port, along with
abnormally coupled flags and bytes, which reflect short TCP
connections.

An analogous breakdown can be done for individual flow
samples, allowing for the understanding of which features
cause a specific sample to be classified as malicious or benign.
This means that the statistical model inferred by EFC allows
a direct mapping between specific features of a given flow
(model input), e.g., ICMP protocol, and a single packet, and
the increase in energy they represent (model output), provid-
ing an understanding of why a given flow was classified as
malicious or benign. Assume, for instance, that EFC classi-
fied a flow as an anomaly and the network manager wants
to understand the reason for that classification. This is equiv-
alent to understanding why that specific flow generated that
specific energy value. As the energy of a flow is the sum of
the couplings and local fields (functions of the flow features),
it is possible to verify which factors of that sum contributed
the most to its increase. Consequently, the manager should
be able to understand which features contributed the most to
classifying the flow as an attack. Now, observing the value
assumed by these features in that specific flow, it is possible
to clearly understand the classification: some of those features

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 23,2023 at 16:37:59 UTC from IEEE Xplore.  Restrictions apply. 



PONTES et al.: NEW METHOD FOR FLOW-BASED NETWORK INTRUSION DETECTION USING INVERSE POTTS MODEL 1133

Fig. 4. Individual contributions of each feature pair for the total energy of
each attack type within CIDDS-001 dataset: brute force (n = 150), ping scan
(n = 100), port scan (n = 800) and DoS (n = 8,950). The heatmap shows
the energetic difference Δe that each pair of features has in relation to the
average expected energy value of that pair in benign flows (n = 10,000),
calculated as Δe = ēattack − ēbenign .

are unlikely to appear in benign flows (considering the normal
behavior inferred from the training set).

In summary, the results presented in this subsection show
that EFC can correctly discriminate between the two flow
classes considered, i.e., benign and malicious, consistently
across all datasets considered. In addition, it was shown how
the total energy of different attack classes can be broken down
and analyzed in detail. This is illustrative of the white box
nature of the statistical model inferred by EFC. In the fol-
lowing, classification results are shown for different classifiers
and compared with the results obtained for EFC.

B. Comparative Analysis of EFC’s Performance

We compared EFC to five different ML classifiers: K-Nearest
Neighbors (KNN) [40], Decision Tree (DT) [41], [42],
Multilayer perceptron (MLP) [43], Naive Bayes (NB) [44], and
Support Vector Machine (SVM) [45], all deployed with their
default scikit-learn configurations. Additionally, two ensem-
ble methods, namely Adaboost (AB) [46] and Random Forest
(RF) [47], were considered, also with default scikit-learn param-
eters. Flow features were only discretized for EFC (Table V)
since discretization would impair the performance of most ML
algorithms. The metrics used to compare the results were the
F1 score and the area under the ROC curve (AUC). The first
metric, F1 score, is the harmonic mean of the Precision and
the Recall, i.e.,

F1 =
2

Precision−1 + Recall−1
=

2 · Precision · Recall
Precision + Recall

(13)

where Precision = TP/(TP + FP), Recall = TP/(TP + FN),
TP are the true positives, i.e., malicious traffic classified as

TABLE V
CLASSES CONSIDERED FOR FEATURE DISCRETIZATION ON CIDDS-001

malicious, FP are the false positives, i.e., benign traffic classi-
fied as malicious, and FN are the false negatives, i.e., malicious
traffic classified as benign. The second metric, the area under
the ROC curve (AUC), is one of the most widespread evalu-
ation metrics for binary classifiers [48], [49]. The ROC curve
is constructed by plotting the true positive rate (TPR) against
the false positive rate (FPR) at different classification thresh-
olds. It means that the AUC is the probability that a randomly
chosen positive example will receive a higher score than a
randomly chosen negative one. One of the main advantages
of the AUC is that it is invariant to changes in class distri-
bution, i.e., the ROC curve will not change if the distribution
changes in a test set, but the underlying conditional distribu-
tions from which the data are drawn stay the same [49], [50].
Since we are interested in evaluating domain adaptation, this
metric is particularly interesting to be adopted in this work.

Table V shows the classes considered for feature discretiza-
tion on CIDDS-001 dataset. Since TCP Flags is the discrete
feature with more possible values (32 possibilities), the alpha-
bet size Q was set to 32. Each continuous feature values were
clustered in a certain number of classes (or bins), up to Q
classes. Classes were determined in such a way that the num-
ber of values within each class was similar for all classes.
Features within datasets CICIDS17 and CICDDoS19 were also
discretized in such a way that the number of values within
each bin was similar for all bins. These discretizations are
not shown here because of the high number of features ( 80
features) in these datasets.

To evaluate EFC’s performance compared to other clas-
sifiers, we performed three independent experiments. The
first experiment was performed on CIDDS-001. Training was
performed on simulated flow samples, while testing was per-
formed on both simulated and real flow samples captured
in an external server. The second and the third experi-
ments were cross-dataset experiments performed on CICIDS17
and CICDDoS19. In the former, training was performed on
CICIDS17, with testing on both datasets, while in the latter
training was performed on CICDDoS19, with testing on both
datasets.

Essentially, in each experiment, we measured the
performance of the classifiers when trained and tested
in the same domain and when trained in one domain and
tested in a different one. The performance was measured as
the average over ten different test sets, composed of 10,000
benign and 10,000 malicious samples each, randomly selected
form the full dataset. With 80% of each test set being used for
training and 20% for testing. The test sets containing samples
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TABLE VI
AVERAGE COMPOSITION OF EACH OF THE TEST SETS IN EXPERIMENT 1

TABLE VII
AVERAGE COMPOSITION OF EACH OF THE TEST SETS

IN CROSS-DATASET EXPERIMENTS 2 AND 3

from a different domain were not used for training, hence they
were composed of only 2,000 benign and 2,000 malicious
samples, randomly selected from the full dataset. EFC’s
cutoff was defined to be at the 95th percentile of the energy
distribution obtained in the training phase based solely in
benign samples. It means that we used a completely statistical
threshold based only in the training considering benign traffic
without adjustments based on malicious samples, such as
other ML-Algorithms require. The average composition of
the test sets is shown in Tables VI and VII.

Table VIII shows the average performance and standard
error (95% confidence interval) of each classifier on the first
experiment considering CIDDS-001 dataset. When trained
and tested in the same simulated environment, DT is the
algorithm presenting the best performance, with an F1-score
of 0.999 ± 0.000 and 0.999 ± 0.000 AUC. EFC does
also perform well, being the second best in terms of AUC
(0.997 ± 0.001). When trained in the simulated environment

TABLE VIII
AVERAGE CLASSIFICATION PERFORMANCE AND STANDARD ERROR

(95% CI) - TRAINING PERFORMED ON CIDDS-001 SIMULATED TRAFFIC

TABLE IX
AVERAGE CLASSIFICATION PERFORMANCE AND STANDARD ERROR

(95% CI) - TRAINING PERFORMED ON CICIDS17

and tested in the real environment, EFC outperforms the other
classifiers (both simple and ensemble methods) in F1-score
(0.675 ± 0.009) and AUC (0.720 ± 0.001). It is notewor-
thy that all algorithms present a considerable degradation
in performance when tested in a different domain, showing
how sensitive the inferred models are to changes in data
distribution.

Table IX shows the results of experiment two, which was
performed on CICIDS17 and CICDDoS19 datasets. When
trained and tested on CICIDS17, DT is again the algorithm
to present the best performance both in terms of F1-score
(0.994 ± 0.001) and AUC (0.994 ± 0.001), though indis-
tinguishable from MLP AUC (0.993 ± 0.001). Notably,
when trained on CICIDS17 and tested on CICDDoS19, EFC
outperformed the other simple algorithms in both F1-score
(0.787 ± 0.004) and AUC (0.781 ± 0.003). Again, it is
possible to see that EFC is the best algorithm in adapting
to a different data distribution when evaluating both met-
rics. However, when considering also ensemble methods, RF
outperforms EFC, which becomes second best in terms of
AUC.

Further, Table X shows the results of experiment three,
which was performed on CICIDS17 and CICDDoS19 datasets.
Once more, DT overperformed the other classifiers when
training and testing on the same dataset, with F1-score of
0.998 ± 0.000 and AUC of 0.998 ± 0.000. When tested
on the CICDDoS19 dataset though, EFC achieved the best
F1-score (0.641 ± 0.002), while KNN was the best in terms
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TABLE X
AVERAGE CLASSIFICATION PERFORMANCE AND STANDARD ERROR

(95% CI) - TRAINING PERFORMED ON CICDDOS19

of AUC (0.670 ± 0.002). EFC’s AUC (0.664 ± 0.002) was the
second best, which means that EFC performance was good,
taking into consideration both the F1-score and the AUC.
Even though this adaptation seems more challenging than the
previous ones, EFC’s performance was consistent on all the
experiments performed.

Taken as a whole, the results presented in this subsection
show that EFC is better at adapting to other domains than
classical ML-based classifiers on average. In addition to that,
it is possible to see that EFC achieves AUC values simi-
lar to the best ML algorithms when trained and tested in
the same domain, showing that it is capable of performing
well even if trained with only half of the information (benign
data only) when compared to other classifiers (using mali-
cious and benign data). Not using malicious samples in the
training phase is likely to be the reason why EFC is so good
at adapting to other domains. EFC’s increased capability for
domain adaptation when there is a significant difference in data
distribution is a highly desirable trait in network flow-based
classifiers, since changes in traffic composition are expected
to be very frequent, and new kinds of attacks are generated
continuously.

Finally, we believe EFC to be an useful tool for network
managers, given (i) its more realistic requirements for training
(only benign traffic that can be easily captured in the tar-
get network), (ii) its adaptability when faced with changes
in traffic patterns, and (iii) the possibility to identify which
flow features cause a specific network flow to be classified
as benign or malicious. However, there is still great room for
improvement. One possibility would be to incorporate EFC
as a first step of a two-step NIDS, in which the flow samples
detected as malicious by EFC would be then sent to deep pack-
age inspection. Another possibility is to implement a dynamic
threshold that would be adaptable to different network sit-
uations, improving classification accuracy. There is also the
possibility of performing feature selection previous to model
inference, which would greatly reduce the time spent in the
model inference phase and possibly also improve classifica-
tion accuracy. And finally, it would be possible to implement
EFC to perform traffic classification at different points in a dis-
tributed network. In the following, we present our conclusions
and future work directions.

VI. CONCLUSION

In this work, we present a new flow-based classifier
for network intrusion detection called Energy-based Flow
Classifier (EFC). In the training phase, EFC infers a statistical
model based solely on benign traffic samples. Afterward, this
statistical model is used to classify network flows in benign or
malicious based on “energy” values. Our results show that EFC
is capable of correctly performing network flow binary classi-
fication considering three different datasets. F1 score (around
97% at best) and AUC (around 99% at best) values obtained
using EFC are comparable to the values obtained with other
classical ML-based classifiers, such as k-nearest neighbors,
decision tree and multilayer perceptron, even though EFC uses
only half of the information in the training phase compared to
the other algorithms.

In addition to that, we analyzed different classifiers in terms
of their capability for domain adaptation and observed that
EFC is more suitable to that than classical ML-based algo-
rithms. In all the experiments performed to evaluate that over
different datasets, EFC outperformed the other classifiers in
F1-score and was among the best ones in AUC. We under-
stand that EFC’s capability for domain adaptation is probably
linked to the fact that the model inference is based only on
benign samples, which helps preventing overfit.

Considering the advantages presented, we believe EFC to be
a promising algorithm to perform flow-based traffic classifi-
cation. Nevertheless, despite the promising results achieved,
there is still room for further testing and improvement. In
future work, we aim at performing a more comprehensive
investigation of EFC’s applicability to real-world data and dif-
ferent contexts, such as fraud analysis in bank data. We are
already working in a multiclass version of EFC that will be
capable of identifying different kinds of known attacks, as well
as unknown suspicious flow samples. Finally, we will investi-
gate which improvements can be attained by using a dynamic
threshold in EFC and performing feature selection previous to
model inference.
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