
IEEE Communications Magazine • June 202160 0163-6804/21/$25.00 © 2021 IEEE

Abstract
Emerging programmable data planes enable

us to modify switch behavior using software
abstractions. However, developing the data plane
software is challenging and typically made in a
monolithic manner. We argue that the data plane
should be developed modularly and employ
additional abstractions to compose data plane
programs and steer packets between them. This
article presents Programming In-Network Modular
Extensions (PRIME), a mechanism to compose
data plane program modules and define how to
steer traffic through these modules. Additional-
ly, the system employs techniques to ensure that
updating the steering configuration is consistent
according to end-to-end forwarding guarantees.
We deployed use cases with existing P4 programs
on BMv2, and the results show that PRIME can
compose programs with small overheads in terms
of latency, the number of forwarding tables, and
parser states.

Introduction
Data plane programmability enables the deploy-
ment of new features into forwarding devices
using software abstractions. Although data plane
programmability has promoted greater flexibil-
ity in managing and controlling computer net-
works, this comes at a cost. Programming and
configuring the data plane is a challenging task,
typically done monolithically for each switch or
router. However, the increasing adoption of soft-
ware-based technologies requires a more dynam-
ic workflow. A promising approach to specifying
data plane configurations is developing modular
programs using high-level languages (e.g., P4 [1])
and compose them into a single concrete net-
work configuration.

Initial approaches to compose data plane pro-
grams used a particular program to emulate many
distinct program modules through its table entries
[2]. Some improvements in this area focused on
reducing the overhead of composed modules
[3], and others on finding efficient ways to steer
packets through different modules [4]. Despite
these improvements, program composition caus-
es overhead on the packet processing. Addition-
ally, updating the steering configuration between
modules is error-prone and may create interme-
diary states, causing misrouting both inside the
switch and on end-to-end paths. This problem
requires that the composition of data plane pro-

grams include mechanisms to ensure transitional
consistency guarantees.

Our solution to the problems mentioned
above is Programming In-Network Modular
Extensions (PRIME), which was introduced in our
previous work [5]. As can be seen in Fig. 1, we
envision that PRIME could be used by DevOps
to systematically specify the composition of P4
modules (e.g., representing different function-
alities such as a firewall and a load balancer).
Network operators can deploy these composed
programs in a host switch and use PRIME to steer
packets between composed programs, avoiding
that updates create intermediary states. This steer-
ing capability would allow a network operator to
specify that, for example, the packets should first
go through a firewall and then to a load balancer,
or vice versa. Further, we provide ways to ensure
that the switch configuration remains consistent.
In this article, we present a completely revised
architecture of PRIME. Different from our earlier
work, which was only able to compose programs
in a single switch, we now consider an end-to-end
update strategy and transitional consistency. We
also present new experiments, highlighting the
end-to-end approach and showing new use cases
with existing P4 programs. We also show a com-
parison with a state-of-the-art system in terms of
parser states, forwarding tables, and throughput.

Background and Related Work
Programmable Data Planes

Programmability enables the deployment of new
features into forwarding devices dynamically as
software artifacts. One possible approach for
modifying the data plane behavior is describing
the packet processing using a high-level pro-
gramming language, such as P4 [1]. In the P4
programming model, packets go through a pack-
et parser that processes user-defined protocols.
After the parser processes a packet, it follows
a pipeline of control flows, which contains reg-
isters, match+action tables, and an apply block
that specifies the packet processing. Finally, pack-
et headers are emitted by a deparser or recircu-
lated to the parser.

Related Work
HyPer4 [2] composes data plane programs at a
single switch using a virtualization solution. More
specifically, the system uses a special P4 program
that can emulate many distinct behaviors through

Ricardo Parizotto, Lucas Castanheira, Fernanda Bonetti, Anderson Santos, and Alberto Schaeffer-Filho

The authors are with Federal University of Rio Grande do Sul.
Digital Object Identifier:
10.1109/MCOM.001.2000904

Consistent Composition and
Modular Data Plane Programming

NETWORK SOFTWARIZATION AND MANAGEMENT

Emerging programmable data
planes enable us to modify switch
behavior using software abstrac-
tions. However, developing the
data plane software is challenging
and typically made in a monolithic
manner. The authors argue that
the data plane should be devel-
oped modularly and employ addi-
tional abstractions to compose
data plane programs and steer
packets between them.

PARIZOTTO_LAYOUT.indd 60PARIZOTTO_LAYOUT.indd 60 6/17/21 12:46 PM6/17/21 12:46 PMAuthorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 27,2023 at 13:23:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • June 2021 61

its table entries. Each composition populates these
tables to emulate the original program without
rebooting the switch. However, this strategy neg-
atively impacts the performance of the original
program with all the overhead of the additional
table entries that perform the emulation.

P4Visor [3] proposed the idea of lightweight
virtualization of programmable data planes. The
system provides multiple operators with different
semantics to compose programs to a host pro-
gram. It performs several optimizations during
the merging to reduce the resource consumption
of control flows and preserve program isolation.
Although techniques to optimize the number
of tables between modules (or functions) help
reduce resource consumption, P4visor still uses
eight tables. Furthermore, P4Visor is conceptual-
ly designed for merging a test version to a pro-
duction version of a program. Consequently, it
supports only two compositions at a time and
requires modifications to the traffic control to
allow more functions to be composed.

Dejavu [4] proposes the use of switch hard-
ware for service function chaining (SFC). The sys-
tem uses a customized header to index network
functions (NFs) and uses recirculation for packets
to go through multiple functions. As recirculating
packets can generate higher overhead on packet
processing, Dejavu programs can divide the same
ingress or egress using sequential and parallel
operators. These operators reduce recirculations
and consequently can allow a higher throughput
rate. However, Dejavu is still limited to single
switch compositions and would require additional
mechanisms to ensure end-to-end compositions.

In this work, we present a system to compose
multiple modular data plane programs, consid-
ering the ability to perform end-to-end updates
consistently in a switch topology. Different from
HyPer4, which uses emulation to compose pro-
grams dynamically, we choose to perform com-
positions in an offline mode and dynamically steer
flows, similar to P4Visor. P4Visor provides two
different testing operators, which compose pro-
grams with other constructs to differentiate test-
ing packets from the production version. Unlike
P4Visor, we do not need to differentiate testing
packets, which reduces the size of constructions
necessary for composition. We also describe tech-
niques to steer packets through multiple program
compositions, similar to how Dejavu does for
chaining functions. Dejavu provides two different
composition operators for a single switch, but it
does not address how to update the steering con-
figuration consistently. Beyond that, we address
the issue of consistent end-to-end updates across
multiple switches. Table 1 presents a head-to-head
comparison between the main characteristics of
PRIME and related work.

PRIME
This section presents PRIME, a mechanism to:
•	 Compose different PDP programs
•	 Specify packet steering through program

compositions
•	 Perform end-to-end updates consistently

Overview: Figure 2 illustrates the architecture
of PRIME, which is divided into three compo-
nents: a composition engine, a steering interface,
and a consistency checker. First, DevOps per-

form compositions of modular P4 programs by
merging them into one single code. During the
composition (Step �), programs go through a
source code analysis to detect and resolve con-
flicts between program modules. After merging
the source code, PRIME exports the steering inter-
face (Step �) and deploys the new composition,
requiring rebooting the switch to instantiate a
new functionality. After deploying the data plane
functionality, NetOPs use the steering interface
to specify which program modules will process
traffic in an end-to-end path (Step �). Traffic is
internally routed through programs using the
recirculation primitive (Step �), and a consistency
checker running in the control plane ensures that
updating the end-to-end steering configuration is
consistent (Step �). In the following sections, we
describe the techniques employed to implement
these components.

Programming the PDP
The composition engine is responsible for merg-
ing smaller modules into a special program called
the host program. The host program has addition-
al building blocks that shape the structure for the
program modules’ source code. During the com-
position, we scan the packet parsers and control
flows for each module and merge them into the
host program if there are no conflicts between
programs.

Extending Packet Parsers: The first phase of
the composition combines the parser from dif-

FIGURE 1. PRIME overview.

Host Switch

P1 P2 Pn...

PRIME

TABLE 1. Comparison between the main characteristics of PRIME and related work.

Work Multiple
operators

Dynamic
compositions

Consistent
updates Goals

Hyper4 • Virtualization

P4Visor • Testing

Dejavu • Service
chainning

PRIME • Modular
programming

PARIZOTTO_LAYOUT.indd 61PARIZOTTO_LAYOUT.indd 61 6/17/21 12:46 PM6/17/21 12:46 PMAuthorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 27,2023 at 13:23:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • June 202162

ferent modules to the host program parser. This
process combines states with the same name and
structure and performs the union of transitions.
While we process this combination, the parser
goes through an analysis phase, which identifies
conflicts between different parsers. If the parser
does not pass this analysis, PRIME triggers a warn-
ing. Otherwise, we can merge the resulting parser
into the host program. The new deparser will oper-
ate by emitting the headers in an order consistent
with the order in which the parser instantiated
them. We plan as future work to consider the pars-
er topological graph as part of the composition.

Control Flow Arrangement: After compos-
ing parsers and deparsers, we compose the pro-
gram control flows. Control flows of P4 programs
include definitions of match+action tables, stateful
registers, and apply blocks. Composing different
programs may create conflicts between the defini-
tions of control flow variables. As a consequence,
a program could write variables of other com-
posed programs and potentially create conflicting
operations. To avoid these conflicts, PRIME identi-
fies equivalent definitions of variables and isolates
them by solving ambiguities between their ID
and their invocation inside the apply block. This
process prevents operations over the variables
of a program from affecting the state of another
program. For example, if we compose a program
P1 that has a table named table_x, and a table
with the same name is already present in anoth-
er program, this would be flagged as a conflict.
Thus, the P1 table definition would be rewritten
as table_x_P1. We also rewrite the primitives that
apply this conflicting table, from table_x.apply()
to table_x_P1.apply(), thus preventing P1 from
manipulating the incorrect program table, which
could potentially create a mixture of configura-
tions. After solving these conflicts, we can final-
ly place the program source code into the host
program structure and deploy the composition
into the switch. Further, an additional table, called
the steering table, can steer packets for a specific
order of modules.

Consistent Steering between Programs
After statically composing all the necessary

programs using the technique described earlier,
PRIME exports an interface for the P4Runtime, a
prototype controller maintained by the P4 con-
sortium, for enabling network operators to spec-
ify the steering configuration dynamically. Typical
P4 compilers would require writing the P4Run-
time methods manually, including the forward-
ing tables and actions. On the other hand, our
technique to export an interface for updating the
steering configuration automates this task, shield-
ing both developers and operators from specify-
ing these methods or how the steering occurs.

Steering Configuration: When the NetOP
specifies the steering configuration for a specific
flow, PRIME stores this configuration in the con-
trol plane for further checking the consistency
(discussed later). Subsequently, we translate the
specification into the steering table entries built
up by a host program action called the catalog.
The steering table plays a central role in perform-
ing the steering. This table intercepts every packet
that enters the switch. When a packet matches
the table, the catalog loads the steering config-
uration into user-defined metadata, a per-packet
state, and will determine how programs will pro-
cess this packet.

Ensuring Correctness: After loading the steer-
ing configuration, the switch starts processing the
programs. After a program module processes the
packet, we recirculate it back to the beginning of
the pipeline. We also recirculate the steering con-
figuration since the P4 language does not make
it automatically. After recirculating, the steering
table does not intercept the packet, avoiding it
seeing a mixture of two different configurations,
which would violate consistency. Subsequently,
the switch continues to process the programs in
the order specified in the steering configuration.
PRIME keeps recirculating the packet until all the
programs catalogued by the steering configura-
tion have processed it.

FIGURE 2. PRIME architecture.

PARIZOTTO_LAYOUT.indd 62PARIZOTTO_LAYOUT.indd 62 6/17/21 12:46 PM6/17/21 12:46 PMAuthorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 27,2023 at 13:23:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • June 2021 63

End-to-End Consistency
To ensure that an end-to-end configuration of the
order of the switch programs is updated consis-
tently throughout the network, one packet cannot
see a mix of the old and new steering configura-
tion (as defined in [6]).

Update Strategy: We follow a two-phase
update approach [6] to prevent a packet from
seeing a mix of different steering configurations.
The two-phase update does not require stopping
flows to achieve consistency because the switch
maintains both the old and new steering config-
urations during the update. However, flows keep
being processed by the old configuration until
the control plane finishes sending the new con-
figuration to all switches. Only after that do we
enable packets to be processed by the new con-
figuration. This is achieved by using an additional
table that tags a packet with a state tag, and only
after all switches have the new configuration are
the packets tagged with the new configuration
tag. Next, the packet is routed through switch-
es, ensuring that the next switch starts processing
the packet using the steering configuration corre-
sponding to the state tag within the packet. Figure
3 presents an example of different steering con-
figurations. On Configuration i, packets of Flow
1 go through programs P1 → P2 on switch S1 and
program P2 on switch S3. On Configuration i’,
packets of Flow 1 go through P1 → P2 on switch
S1 and follow to programs P2 → P3 on S2. Consid-
ering this scenario, if switch S1 has updated to the
new configuration but not switch S2 and S3, the
packets of this flow will be marked and processed
by Configuration i until S2 and S3 receive the new
configuration. Only after that do we start marking
packets with the configuration i’ tag. This ensures
that the packets will face either configuration i or
i’, but not a mixture of the two, without requiring
flows to be stopped.

Checking Consistency: To avoid switch bugs
or a malicious attacker rewriting the steering con-
figuration, we draw inspiration from P4Consist [7]
to build on a strategy to check for consistency.
The consistency checker collects snapshots of the
steering configuration and compares them to the
control plane rules. When it verifies that a new
configuration is on all switches, we commit the
change by allowing packets to go through the
new configuration. When the consistency checker
identifies a rule that differs from what the network
administrator specified, it marks it as inconsistent
and rolls back the switch state to a previous con-
sistent configuration. In practice, the inconsistent
rule will be replaced by the correct one, and
PRIME sends a warning to the network operator
for analysis.

End-to-End Consistency Case Study
To investigate the benefits of our composition
strategy and our techniques to end-to-end consis-
tency, we provide a case study that reproduces
the scenario depicted in Fig. 3. The case study
uses the same three switches presented in the fig-
ure. We also used the same three programs, but
instead of naming them generically as P1, P2, and
P3, we used a monitoring mechanism designed
for security [8], a telemetry system [9], and an
offloaded Paxos coordinator [10], respectively.
Paxos is a network service that implements the

traditional consensus protocol using network
hardware. The Paxos coordinator is responsible
for receiving client requests and trying to make
acceptors agree on them.

We show a visualization of the measured laten-
cy and highlight the configuration tags for the traf-
fic of Flow 1 in Fig. 4. To measure the latency,
we store the difference between the final and
initial processing times of this flow into registers
and later collect it for analysis. The plot has been
annotated to indicate which configuration (wheth-
er i or i’) is currently being used in each switch to
process packets of the flow. We obtained this by
collecting the configuration tag of each packet.
Initially, 608 packets go through configuration i
on switch S1, which is composed of the monitor-
ing (P1) and telemetry (P2) programs. Next, the
same amount of packets goes through S3, where
they are only processed by the telemetry program
(P2). Eventually, assuming that the link S1 → S3
becomes congested, the network operator wants
to redirect Flow 1 through S1 → S2 and start pro-
cessing Flow 1 by the coordinator (P3).

Therefore, what can be seen in Fig. 4 is a
transition from configuration i to i’ that changes
the steering of Flow 1 nearly at the 43rd sec-

FIGURE 3. Steering configuration transition.

s1

s2

s3

FIGURE 4. End-to-end configuration example.

state i'

state i'

state i

state i

0 packet
loss

0 packets from
state i'

PARIZOTTO_LAYOUT.indd 63PARIZOTTO_LAYOUT.indd 63 6/17/21 12:46 PM6/17/21 12:46 PMAuthorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 27,2023 at 13:23:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • June 202164

ond. After completing the transition, 839 pack-
ets traverse configuration i’ composed by the
monitoring (P1) and telemetry (P2) programs at
S1. Next, the same 839 packets go through the
telemetry (P2) and the offloaded version of the
Paxos (P3) coordinator at S2. Suppose that the
transition presented in the case study is incon-
sistent. If it were inconsistent, either we would
see packets in S3 after the commit, or a packet
would see configuration i in S1 after the commit,
or S2 would have dropped Flow 1 packets (since
S2 had no rule for Flow 1 in the previous config-
uration i and the default action is to drop pack-
ets). However, none of these are true in our case
study. Therefore, PRIME performed the transition
consistently. We want to clarify that in Fig. 4, the
transition time in S1 is slightly different from the
time when S2 starts processing traffic because
switches do not have synchronized clocks. How-
ever, this does not compromise consistency (i.e.,
the number of packets processed before and
after the transition is in conformance with the
consistency notion). Synchronizing data plane
clocks is an open research challenge that can
be leveraged in the future to better visualize our
experiments [11, 12].

Experimental Evaluation
This section presents experiments that quantify
the cost of composing programs using PRIME.

Use Case
We composed existing P4 programs with our host
program and deployed on the behavioral model
(BMv2). We performed 10,000 requests for each
composition and gathered switch timestamps to
calculate the latency, as in [13]. Since this set of
experiments focus on analyzing the composition
of programs in a single switch, we configured a
topology consisting of two hosts connected to a
single switch. We traversed a synthetic workload
that triggered packets in an interval of 1 s from
one host to another. The experiments were per-
formed on a Linux virtual machine with 2 CPU
cores at 2.00 GHz and 2 GB of RAM.

As in the end-to-end consistency case study,
we make use of a monitoring mechanism [8], a

telemetry system [9], and the Paxos coordinator
[10]. We compose these programs with a host
program and compare the latency with the orig-
inal version.

Figure 5 presents the latency that each compo-
sition imposes in the data plane. Latency increas-
es compared to the original monolithic version.
For example, when PRIME steers packets through
the coordinator, the average latency is nearly 200
s higher than the original program. The same
happens with throughput, where the original
program reached nearly 3 Mb/s more than the
composed version. This occurs because the inser-
tion of additional states to the parser and steering
primitives increase CPU consumption. Despite
this small overhead, we argue that this is accept-
able because our solution has two main advan-
tages: first, it allows multiple programs to share
the same switch resources; second, it enables
modular compositions, making programming and
managing easier.

Comparison with the State of the Art
In our evaluation, we compare our approach
(PRIME) to P4Visor [3]. As mentioned in the
related work, P4Visor has goals that are different
from ours. The system provides test operators that
compose different versions of P4 programs. How-
ever, by composing programs using P4Visor’s
differential testing operator, we can implement
the composition with similar properties as we do
with PRIME. Thus, we performed two different
compositions using this operator: two instances
of a simple router (a production and a test ver-
sion); and also the router program combined with
an alternative implementation of LetItFlow [14].
LetiItFlow balances traffic using the concept of
flowlets (bursts of packets within a flow) and for-
wards them on random paths.

Code Metrics: First, we compare the number
of parser states created by each composition.
PRIME requires three parser states in the first
composition, while P4Visor requires five (because
P4Visor makes additional states specifically intend-
ed to parse test packets). Similarly, the second
composition requires six states with P4Visor and
only four with our approach. Next, we compare
the total number of forwarding tables for each
composition. For the first composition, P4Visor
uses 12 tables, and PRIME uses 7 tables; for the
second composition, P4Visor uses 14 tables, and
our approach uses only 10 tables.

System Throughput: Similar to our system,
P4Visor composes programs into a P4 base pro-
gram with control constructs to steer packets
internally. Once every composition is merged
into the host program, its latency will always
sum to the latency of the compositions. To be
able to compare P4Visor with our approach, we
translated the P4Visor base program to P4v16.
The translation was required to support the same
measurement methodology for both systems and
perform a more reliable comparison. We per-
formed an experiment that traversed 1000 pack-
ets through the programs with no table entries,
that is, we only assessed the host program for-
warding structure during the experiment. P4Visor
achieves about 8 Mb/s, while PRIME achieves
about 12 Mb/s. The result can be explained
because PRIME requires fewer lookup opera-

FIGURE 5. Latency  programs.

PARIZOTTO_LAYOUT.indd 64PARIZOTTO_LAYOUT.indd 64 6/17/21 12:46 PM6/17/21 12:46 PMAuthorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 27,2023 at 13:23:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • June 2021 65

tions and parser states than the P4Visor host pro-
gram.

Concluding Remarks
We propose PRIME, a composition mechanism
for P4 programs that also provides ways to steer
packets through the programs consistently. We
present a functional case study showing a con-
sistent transition between two steering configu-
rations. Experimental results show that ensuring
consistency imposes an acceptable impact on
latency using a software switch. As future work,
we would like to evaluate our proposal on real
hardware. Furthermore, we want to explore
algorithms that identify dependencies between
forwarding tables to update the internal state
of program modules [15]. Finally, we want to
explore other mechanisms to identify the pres-
ence of loops before performing an update.

Acknowledgments
The authors would like to thank CNPq and
FAPERGS for the financial support.

References
[1] P. Bosshart et al., “P4: Programming Protocol-Independent

Packet Processors,” SIGCOMM Comp. Commun. Rev., July
2014.

[2] D. Hancock and J. van der Merwe, “Hyper4: Using p4 to
Virtualize the Programmable Data Plane,” Proc. 12th Int’l.
Conf. Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’16, 2016.

[3] P. Zheng, T. A. Benson, and C. Hu, “Building and Testing
Modular Programs for Programmable Data Planes,” IEEE
JSAC, vol. 38, no. 7, 2020, pp. 1432–47.

[4] D. Wu et al., “Accelerated Service Chaining on a Single
Switch ASIC,” Proc. 18th ACM Wksp. Hot Topics in Net-
works, ser. HotNets ’19, 2019, pp. 141–49.

[5] R. Parizotto et al., “Prime: Programming In-Network Modular
Extensions,” Proc. IEEE NOMS 2020, 2020, pp. 1–9.

[6] M. Reitblatt et al., “Abstractions for Network Update,” Proc.
ACM SIGCOMM 2012 Conf. Applications, Technologies,
Architectures, and Protocols for Comp. Commun., 2012.

[7] A. Shukla et al., “P4consist: Towards Consistent p4 SDNS,”
IEEE JSAC, vol. 38, no. 7, 2020, pp. 1293–1307.

[8] L. Castanheira, R. Parizotto, and A. Schaeffer-Filho, “Flow-
stalker: Comprehensive Traffic Flow Monitoring on the Data
Plane Using p4,” Proc. 2019 IEEE ICC, 2019.

[9] C. Kim et al., “In-Band Network Telemetry via Programmable
Dataplanes,” ACM SIGCOMM, 2015.

[10] H. T. Dang et al., “P4xos: Consensus as a Network Service,”
IEEE/ACM Trans. Networking, 2020.

[11] N. Yaseen, J. Sonchack, and V. Liu, “Synchronized Network
Snapshots,” Proc. 2018 Conf. ACM Special Interest Group on
Data Commun., 2018, pp. 402–16.

[12] P. G. Kannan, R. Joshi, and M. C. Chan, “Precise Time-Syn-
chronization in the Data-Plane Using Programmable Switch-
ing ASICs,” ser. SOSR ’19. ACM, 2019, pp. 8–20; https://
doi.org/10.1145/3314148.3314353.

[13] H. T. Dang et al., “Whippersnapper: A p4 Language Bench-
mark Suite,” Proc. Symp. SDN Research, ser. SOSR ’17,
2017, pp. 95–101.

[14] E. Vanini et al., “Let it Flow: Resilient Asymmetric Load
Balancing With Flowlet Switching,” Proc. 14th USENIX Symp,
Networked Systems Design and Implementation, 2017.

[15] M. He et al., “Toward Consistent State Management of
Adaptive Programmable Networks Based on p4,” ser.
NEAT’19, ACM, 2019, p. 29–35.

Biographies
Ricardo Parizotto is a Ph.D. student at Federal University of
Rio Grande do Sul (UFRGS), Brazil. His current research focuses
on programmable networks and in-network computing.

Lucas Castanheira is an M.Sc. student at UFRGS. His current
research interests are distributed systems, programmable net-
works, and in-network computing.

Fernanda Bonetti is an M.Sc. student at UFRGS. Her current
research interests are network function virtualization, container-
ization, and resource management.

Anderson Santos is a Ph.D. student at UFRGSl. His current
interests are network security, formal verification, and network
resilience.

Alberto Schaeffer-Filho holds a Ph.D. in computer science
(Imperial College London, 2009) and is an associate professor
at UFRGS. His areas of expertise are network management, pro-
grammable networks, and network resilience. He has authored
over 70 papers in leading peer-reviewed journals and confer-
ences related to these topics. He served as TPC Co-Chair for
IFIP/IEEE IM 2021, General Chair for SBRC 2019, and Sympo-
sium Co-Chair for IEEE ICC 2018 CQRM.

As future work, we would
like to evaluate our

proposal on real hardware.
Furthermore, we want to
explore algorithms that
identify dependencies

between forwarding tables
to update the internal state
of program modules. Finally,

we want to explore other
mechanisms to identify the

presence of loops before
performing
an update.

PARIZOTTO_LAYOUT.indd 65PARIZOTTO_LAYOUT.indd 65 6/17/21 12:46 PM6/17/21 12:46 PMAuthorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 27,2023 at 13:23:38 UTC from IEEE Xplore. Restrictions apply.

