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Abstract The evolving computer network landscape has enabled programmabil-
ity in various network aspects, including Software-defined Networking (SDN) for
control plane programmability and the introduction of the Programming Protocol-
independent Packet Processors (P4). P4, a vendor-independent protocol, allows pro-
grammability on the data plane, offering flexibility for new services and applica-
tions. However, this flexibility introduces the need for automated solutions to mon-
itor and manage the security of evolving networks and services. In this work, we
propose FEVER, a framework utilizing P4-based telemetry and network device
(switch) resource consumption to create fingerprints of network and P4 applica-
tion behaviors. FEVER provides a comprehensive approach to identifying network
anomalies through various metrics. The framework was evaluated in a virtualized
scenario using unsupervised Machine Learning (ML) algorithms to detect diverse
P4 program behaviors and traffic overload, demonstrating its potential for early de-
tection of malicious activities in programmable networks. The results indicate high
accuracy in identifying misbehavior and detecting sudden changes in P4 programs
affecting the network.

1 Introduction
Society and companies’ increasing demands for high-speed and reliable commu-
nication propel the evolution of computer networks. Programmable networks have
emerged as a pivotal approach to these evolving requirements. This approach pro-
vides the flexibility and adaptability necessary to accommodate the diverse services
and applications that enable the evolution of communications [13], thus helping to
avoid network ossification. Examples of programmable networks and facilitating
technologies include the concepts of Software-defined Networking (SDN) [1] and
Network Functions Virtualization (NFV) [3].
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Programmable networks allow behaviors and services to be changed rapidly
and fashionably. SDN improves network management by decoupling the control
plane from the data plane, thus building more flexible and efficient networks by
running intelligent controllers out of the switches [1]. However, SDN is still de-
pendent on protocols like OpenFlow, which might be negatively impacted by the
different implementations of data path hardware that vary according to vendors.
This makes complex the management of different types of switches [7]. There are
also approaches emerging as an ally to add programmability for the data plane.
The Programming Protocol-independent Packet Processors (P4) is a protocol and
vendor-independent solution [4] that defines new packet processing protocols with-
out needing specific hardware support. It enables the development of protocols tai-
lored to specific network requirements. Also, it allows the monitoring of insightful
metrics using frameworks that allow for collecting and reporting network states by
only using the data plane [16].

One critical aspect of computer networks is cybersecurity, which is not an ex-
ception for programmable networks and P4 implementations. Currently, there are
research efforts towards security solutions to detect and mitigate cyberattacks, such
as P4-based firewalls [17] and detection of Distributed Denial-of-Service (DDoS)
using Machine Learning (ML) [12]. Also, there are considerable efforts for network
verification based on assertions to identify faulty P4 programs [19] and bug-free
programs [6]. Although such solutions are promising, the existing solutions focus
on network traffic and targeting specific cyberattacks, thus not covering the detec-
tion of possible malicious behaviors from the switch and P4 program perspective.
Therefore, there is still room for novel approaches correlating vast amounts of data
and metrics available for a fine-grained analysis of networks and P4 program be-
haviors during run-time, thus allowing for detecting malicious behavior in networks
considering both traffic and P4 programs running. Behavioral fingerprinting can be
an ally for such analysis as it can provide a deeper understanding of device be-
havior beyond traditional monitoring metrics. Examples of scenarios where behav-
ioral fingerprinting was successfully applied include the detection of ransomware in
resource-constrained devices [15] and, on programmable networks, for identifying
operating systems running on hosts [2].

Therefore, we advocate that intelligent behavioral fingerprinting [15] can be used
to model patterns and characteristics of network devices and P4 applications during
routine operation. After that, patterns could be used to identify anomalies in the
traffic of P4 programmable switches or behavior changes during the execution of a
Firewall developed as a P4 program, among others. We assume that each device and
program may exhibit unique traffic flow characteristics, protocol usage, resource
consumption, and responses to varying network conditions. By capturing and ana-
lyzing such unique behavioral patterns, behavioral fingerprinting can offer a more
comprehensive and context-aware perspective for network management activities.
Based on that, it is possible to identify malicious behaviors on programmable net-
works even before they become a more complex problem, including cyberattacks at
early phases and malicious changes in P4 programs.



FEVER: Behavioral Fingerprinting for Programmable Networks 3

Thus, in this work, we propose FEVER, a framework for behavioral fingerprint-
ing of programmable switches running P4 applications to identify anomalies by
combining resource consumption and network telemetry. For that, the framework (i)
identifies a set of metrics (e.g., network-centric and resources consumption) to be
used for the behavioral fingerprinting of programmable networks and (ii) describes
a clear path to generate the fingerprints. Furthermore, the FEVER framework con-
sists of two unsupervised ML algorithms [18] implemented and trained to identify
anomalous traffic (e.g., elephant flows and DDoS) coming from different hosts and
modifications on P4 program code that change their behaviors. The feasibility and
performance of FEVER is evaluated in a realistic virtualized scenario composed of
virtual P4-based switches and P4 programs. The proposed ML algorithms are eval-
uated based on the F1-score and application scenarios emulated using Mininet and
bmv2 switches, followed by a discussion of key findings. The results show that our
frameworks can identify different P4 program behaviors and traffic overload in spe-
cific switches by looking at the behavior fingerprinting generated based on switches’
resource consumption.

The rest of this document is organized as follows: Section 2 presents related
work. The FEVER framework is described in Section 3, followed by evaluation and
discussion in Section 4. Finally, in Section 5, the conclusion and future work are
presented.

2 Related Work
We conducted a systematic literature, particularly of applications for detecting and
mitigating cyberattacks and managing cybersecurity in programmable networks.
Work focused on three aspects was identified: (i) network availability, (ii) network
security, and (iii) privacy.

P4 programs have been developed to ensure greater network availability and per-
fect functioning from a performance and security point of view. Such applications
include protecting against impersonation attacks by filtering malicious traffic [9],
identifying DDoS attacks by statistically analyzing traffic flows [5], and also verify-
ing P4 programs using static checks [6] and assertions [19] to identify possible ex-
ecution faults. Furthermore, P4 has also been used to identify devices’ Operational
Systems (OS) and react to them accordingly, such as dropping packets or defining
rate-limit for specific OS types [2]. However, most of this work focuses primarily
on traffic analysis only or has too specific use cases for cyberattack detection. Such
solutions also have limitations in identifying dynamic changes on the network, such
as when a P4 program is maliciously replaced or changed by network operators or
even when a potential cyberattack is imminent (i.e., anomalous behaviors started).
Thus, we argue that identifying anomalies at an earlier stage requires an intelligent
monitoring of devices individually to prevent anomalies from propagating through-
out the network.

Therefore, although there are several emerging applications for P4 programs and
programmable networks, there is still a need for automated solutions that allow for
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proper monitoring and management of the security of existing networks and ser-
vices. Current challenges include limitations in memory usage and accessibility for
P4 program development and using collected metrics for effective performance and
security applications [8]. There is also the need to make the network more robust
and autonomous, which involves combining telemetry and ML elements to create in-
frastructures that adapt to the needs of the network and can predict possible failures.
Such elements can support better detection of cyberattacks and anomalies while
improving the detection performance of interested behaviors.

ML can be an ally to address such issues due to its potential to understand com-
plex data patterns and adapt to heterogeneous scenarios based on different training
datasets [18]. The opportunity has therefore arisen to implement approaches based
on ML to analyze statistical metrics and resource usage behavior in order to identify
anomalies before such behavior becomes a problem for the operation of services
in programmable networks [11], such as a DDoS attack or a malicious change to a
network program. To do this, we can use the concept of behavioral fingerprinting,
which, although there are applications of the concept in other scenarios (e.g., mal-
ware detection in IoT scenarios) [15], is still is underinvestigated in the context of
programmable network security.

3 The FEVER framework
FEVER is proposed to explore programmable device behavior fingerprinting for
misbehavior detection in programmable switches, traffic, and network programs
running as part of the network (i.e., P4-based programs). Behavior fingerprinting
can be defined as a collection of metrics of an object with expected values over time.
The behavioral fingerprint of a network device might include information about how
it handles traffic, processes packets, uses computational resources, and responds to
various commands and requests. This data is collected through monitoring tech-
niques and can be used to establish a baseline of normal behavior for the device and
network applications running. When anomalies occur (e.g., unusual traffic patterns,
unexpected responses, or deviations from the established baseline), it may indicate
the presence of malicious activity, network attacks, or hardware/software issues.
Therefore, by continuously monitoring and comparing the device’s current behav-
ior to its behavioral fingerprint, network administrators can detect and respond to
potential threats or network performance problems proactively.

Figure 1 shows the FEVER architecture, with the different components and steps
described. The architecture is divided into three modules: (i) Data Analysis, which
represents the tasks related to the definition of a possible range of metrics and also
processing collected data, (ii) Behavior Fingerprinting, which determines the sce-
narios to be considered (e.g., normal and anomalous) and train the models to iden-
tify the different behaviors of P4 programs and devices; and, finally, the (iii) Testbed
represents the environment used to monitor the behaviors in order to create datasets
for behavior fingerprinting and also detect anomalies. Each of these modules and
their respective components are described below.
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Fig. 1 FEVER Architecture

In the Data Analysis, the first step consists of defining candidate behavioral met-
rics to be monitored, such as memory and Central Processing Unit (CPU)-related re-
sources, In-band network telemetry framework, and network policies. Such metrics
might change according to the environment in which the programmable network is
built (e.g., Intel Tofino or a Mininet-based emulation). After defining metrics, in the
next step, it is necessary to select those that are relevant to detect different behaviors.
For that, applying different techniques to identify the correlation and dependence
between metrics is possible. Possible techniques include heatmaps to understand
the relationship between metrics and linear plots to verify the behavior of two or
more metrics under regular and anomalous circumstances.

The tasks involved in the collection and processing of data are also part of the
Data Analysis module. The Data Processor is a component that receives data col-
lected by the Data Collector and refines the data to make it more digestible by
the Metrics Selection and other modules. Such refinements include removing noise
from the raw data and preparing to plot the results for behavior analysis. The Data
Collector also communicates with the Behavior Fingerprinting module to to collect
data from the monitors and whether additional data processing is needed.

For the FEVER framework, we consider both in-device and externally collected
behavior sources. Examples of metrics mapped and being considered in our imple-
mentation are shown in 1. The resource consumption is divided in terms of CPU and
Random-Access Memory (RAM), which also include different levels of granular-
ity, such as CPU migrations, Instructions and cycles, page faults, and Resident Set
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Size (RSS). Such metrics allow us to understand behavior better and generate the
fingerprints. Additional metrics can also be considered, including Ternary Content
Addressable Memory (TCAM), a high-speed memory widely used in networking
devices and programmable switches. To collect resource data from the switches, we
have written a shell script that runs the Linux perf and proc commands simultane-
ously, while iperf was integrated into the script to create different flow behaviors
according to the test needs, such as a normal flow of packets between all switches
and specific elephant flows.

Table 1 Overview of Metrics Considered for Behavioral Fingerprinting

Metric Example of Usage Monitoring
Method

CPU
The CPU usage is related to an abnormal increase or

decrease of instructions in case of an anomaly.
Bugs and malicious attacks can increase the usage of CPU.

proc

RAM
RAM monitoring helps us to detect anomalies if they

allocate memory to do malicious activity or due to misconfiguration. perf

Queue
Depth

Anomalies might affect packet processing by slowing it,
thus increasing the congestion. The Package Queue may increase

if an anomaly changes the behavior of the switch.
INT

Syscalls Analysis of additional events running in background can
improve the detection performance perf

Processes It is important to identify processes that represents
virtual switches or that perform core functions ps aux

Packet
Header

Analysis of per-packet headers to
statistically characterize switch behavior

INT and
Wireshark

Figure 2 shows an example of collected metrics selection using a heatmap. It
can be observed that there is only one light diagonal in the matrix with the value
1, showing that the high correlation is only between the feature itself. The features
with high correlation can be maintained since they did not correlate to other values
more than once and due to the high granularity of the values. After the heatmap
analysis, a line plot can be provided for a more in-depth analysis of overlapping
metrics.

The fingerprinting is finally built in the last module. For that, the scenarios are
defined to determine which behaviors have to be considered for the generation of
the training dataset and traffic generation. For example, P4 program actions and
behaviors can be monitored to identify program changes and bugs, while switch
resource consumption can be analyzed to understand anomalous behavior. The ML
Models are then generated to identify program changes, abnormal traffic before it
disrupts the network, and anomalous detection by monitoring the behaviors of net-
work switches. Different ML techniques can be used for behavioral fingerprinting
because they can detect complex data patterns and handle multi-variate data.

An instance of the FEVER is implemented as a proof-of-concept, running on
Mininet and providing ML models based on One-Class Support Vector Machine
(OCSVM) and Local Outlier Factor (LOF) as unsupervised learning for behavior
fingerprinting. These ML techniques were used because of their simplicity and po-
tential to identify outliers based on normal behaviors. Also, scripts were imple-
mented for monitoring virtual switches and generating traffic according to specific
scenarios. The source-code of the FEVER and datasets are publicly available at [10].
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Fig. 2 Heatmap for Metrics Correlation and Selection

4 Evaluation
To validate our approach, we have developed a data pipeline focused on monitoring
how anomalies (e.g., unexpected traffic and changes on P4 programs) alter the CPU
and memory usage in individual switch devices and compared this situation with a
regular data flow. For this experiment, we have created a fingerprint of P4-enabled
switch considering the CPU and memory metrics, thus, analyzing the resources us-
age of processes related to bmv2 while running a Mininet network. We run a topol-
ogy of three switches and three hosts, configured as the testbed shown in Figure 1.
All the switches run a P4 program called Multi-Hop Route Inspection (MRI), which
enables users to monitor the routes taken by packets and their associated queue
lengths. A Python script was developed to set up the Mininet environment and con-
figure the hosts and bmv2 switches. As described in the framework, iperf was also
used to create the traffic flows to simulate behaviors.

The monitoring scripts implemented by FEVER collect metrics each second and
save the collected data to a Comma-Separated Values (CSV) file for each switch for
one hour. Each virtual switch’s Process ID (PID) is identified for that. As Mininet
treats each switch as a single process, it is possible to identify the PID corresponding
to the switch activity and monitor it using proc and perf commands. Thus, after one
hour of running the simulation, we gathered the monitored data from CSV files
generated with the PID of the switches being monitored. Each experiment consisted
of running the desired P4 program (from the p4lang tutorial repository) [14] for one
hour with modifications to generate the desired traffic.

The behaviors considered consist of (i) normal traffic, (ii) anomalous traffic, and
(iii) modified P4 behavior. Normal traffic was defined as simple requests that use
less than 10% of network capacity sent from two clients to a server. The (ii) anoma-
lous traffic is a high-traffic flow in which the hosts flood the network using the maxi-
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mum available throughput. For the (iii) modified behavior, we consider an MRI with
modifications, such as a conditional branch and arithmetic operations.

The experiments have to be run until the behaviors can be precisely modeled.
For each round, we create a heat map of all metrics and drop the metrics with high
correlation, such as all metrics with 99% of correlation identified using heatmaps
(cf. Figure 2). Next, a manual analysis is performed to verify potential clear be-
haviors and outliers, thus, allowing the human in the loop to calibrate the model
and understand its feasibility. In case of simple scenarios, a basic set of rules can
be defined, but when this manual verification shows complex correlations, our ML
models must be used. We ran our experiments three times for each behavior to create
our training dataset for normal, anomalous, and modified behaviors. Therefore, the
experiments were run nine times, with a 1-hour duration each. The performance of
the ML models is analyzed using the well-established metrics recall, precision, and
F1-score. All features were selected and extracted following the FEVER framework
as introduced in Section 3. We used 3,240 samples of normal behavior for training
and 6,840 samples of all behaviors (normal, anomalous traffic, and modified P4
program) for evaluation.

4.1 Detection of Anomalous Traffic
This experiment shows the performance of FEVER to detect abnormal data flow
increases through a switch to identify possible flooding attacks earlier, such as Ping
Flood, SYN/ACK Flood, and HTTP/HTTPS Flood. We have used the iperf tool to
create anomalous traffic to send UDP packets. The default behavior of iperf when
using UDP is to send data as fast as possible, without any specific rate limiting, i.e.,
it floods the network with UDP packets to measure the maximum throughput. We
have considered this scenario ideal since it would not disrupt the network but would
send enough traffic to be detected. In a real-world scenario, detecting an increase in
flow before a DDoS caused by the data flood would be beneficial.

Both Host 1 and Host 2 behave like clients, and Host 3 is the server. Clients send
UDP packets to the service, creating a high-traffic flow through Switch 3, the one
connected to Host 3. Since the high-traffic flow was directed to Host 3, we analyzed
only Switch 3 to detect the anomaly. The RSS was identified as the best metric
for such a scenario based on initial analysis (e.g., heatmaps, overlapping, and line
plots) of metrics collected. After the heatmap analysis, line plots were provided to
identify metrics with overlapping or unidentifiable anomalous behavior, which have
to be automatically identified by ML algorithms. The dropping of such overlapping
increases the accuracy of detection algorithms, but it is not a realistic task in real
environments since abnormal behavior is unknown in real environments. Therefore,
the ML models must be used to understand metrics even when overlapping happens.

Figure 3 shows the overall performance of both ML models implemented using
different features for anomalous traffic identification, including all features com-
bined. Even though RSS alone has a maximum performance, it is dangerous to rely
on it alone since this could indicate an overfitting of the model. Anomaly detection
relies on robustness and identifying unknown patterns incompatible with normal be-
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havior. Using only one feature might incapacitate the ability of different scenarios
to be analyzed, and it generates trained models for specific situations rather than a
generalized approach. Using all features has a high F1-Score, so it would not com-
promise the overall analysis, and it would guarantee the possibility of more data
from unknown patterns being collected, thus identifying anomalies.

Fig. 3 F1-score for the Detection of Anomalous Traffic using Different Features

The OCSVM achieved an maximum accuracy for identifying anomalous behav-
ior in terms of high traffic in a determined switch. Since it is an ML algorithm
designed for situations where only examples of the normal class are available dur-
ing the training phase, it learns a boundary around the regular instances. It classi-
fies any value outside this boundary as an anomaly. The magnitude difference be-
tween the RSS memory and lack of overlapping helped the algorithm ideally detect
the anomaly. However, relying only on features high relevance by dropping other
features might overfitting the model since the nature of an anomaly is unknown.
OCSVM have learned a boundary that effectively captures this separation. This can
be verified if we drop the RSS feature (the most relevant metric). In this scenario,
OCSVM performs poorly, with a recall of 0.43 and a precision rate of 0.56.

The LOF also scored the same as the OCSVM, thus, achieving a perfect accuracy
for scenarios where the anomaly is known. LOF, in particular, is designed to identify
local deviations from most data points. Therefore, if anomalies form distinct clusters
or have noticeable local differences, LOF can excel in detecting them. As we have
isolated regions detected by the LOF, the overlapping did not interfere in the model
performance. In conclusion of such an experiment, memory analysis is shown to be a
reliable source to detect flow changes and, thus, interesting to prevent flood attacks
or network disruptions since, with more packets being processed, more memory
needs to be allocated to operate the switch processes properly.
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4.2 Detection of Changes on P4 Programs
We also created behavior fingerprinting for two scenarios: (i) when the same pro-
gram is running but with possible malicious modifications and (ii) when a different
program is running (i.e., program identification). Figure 4 shows the overall F1-
score for identifying changes in a P4 program (i.e., original MRI but with a basic
math operation and new variables included in the source-code). The F1-score is pro-
vided for both LOF and OCSVM using different features (e.g., CPU instructions and
RSS combinations) to identify if the running program is correct (normal) or mod-
ified according to scenario (i). It shows that the RSS still plays an important role
when identifying modified behavior, where CPU instructions can be used as an ally
to identify normal behavior.

Fig. 4 F1-score for the Detection of Changes in the Original P4 Implementation of the MRI

Besides that, we have checked if the behavioral fingerprinting can also identify
which program is running. For that, different metrics can be used since the pro-
gram’s resource consumption vary according to their functionalities and process-
ing demands. Figure 5 shows that each metric’s percentage varies according to a
pre-defined baseline. For that, we have used the resource consumption of a Basic
Forward as a baseline and analyzed how much (in terms of percentage) each of the
following P4 programs surpasses the baseline resource usage: MRI, Link Monitor,
and Explicit Congestion Notification (ECN). All P4 programs, including the base-
line, are the same as those available at the p4lang repository [14].

As can be seen, all metrics vary for the programs, especially those related to
memory and CPU usage. This can be used then to create a fingerprint to identify
specific programs running in the network and also highlight if malicious changes
are made in the switch, such as when a malicious operator replaces P4 programs to
affect the network service chain.

By using such metrics to determine the behavior fingerprint of each P4 program,
we were able to classify 100% the correct problem, thus identifying what is run-
ning in the switch by only looking at the resource consumption. When dropping
some metrics (e.g., RSS, page faults, and CPU migrations), our model achieves a
performance of 95% accuracy in identifying the correct program running.
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Fig. 5 Analysis of Consumption Behaviors of Different P4 Programs

5 Conclusions and Future Work
This work proposed FEVER, a framework for the behavioral fingerprinting of pro-
grammable networks, including detecting the misbehavior of P4-based switches and
P4 programs. ML-based models are employed together with statistical processing
to map and understand metrics that highlight potential anomalies or even normal
behaviors given a given traffic and a set of P4 programs running. This allows the
identification of (i) anomalous traffic, (ii) malicious changes in the P4 program’s
code, and the (iii) replacement of P4 programs to disrupt the network functionality
and associated services. In real-world scenarios, all of these anomalies can happen
in parallel, thus making clear the need for automated ML models ready to infer from
different data patterns.

In conclusion, our experiments provide essential insights into the fingerprinting
of programmable networks, and our FEVER framework has proven to be a consis-
tent methodology for analyzing the behavior of programmable switches and P4 pro-
grams, which can be adapted to real-life scenarios. As a limitation, it is essential to
note that our evaluations are conducted in the emulated environment; therefore, due
to different abstractions and technical aspects, there are challenges to implement-
ing it in real-world devices (e.g., Tofino and FPGA). For example, our emulated
environment uses one single PID for a switch, while many processes are involved
in a switch functionality in real life. However, adaptations are possible - from met-
rics collection to behavioral fingerprinting - to efficiently apply our framework in
various scenarios and types of devices.

Future work includes (i) investigation of the sensitivity of detection of small
changes on P4 program codes and (ii) analysis of additional metrics for behavioral
fingerprinting, including full integration of INT framework and syscalls to provide
more information to represent complex behaviors better. Furthermore, implementa-
tion on real-world scenarios composed by Tofino switches is envisioned.
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