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Abstract—Blockchain (BC) and Distributed Ledger Technolo-
gies (DLT) have been widely used in various applications in
different areas, from finance to healthcare. For such applications
to participate and interact with BCs and DLTs, they must
rely on specific software, called nodes, when providing tools
and functions for BC synchronization, and called wallets when
providing tools for address generation, transaction creation, and
fund management. In this sense, wallets are crucial components to
be secured within BC-based applications, as they hold sensitive
files (e.g., keystore files storing private keys used to generate
addresses and sign transactions), which can be a target for
attackers. Thus, we propose Scylla, a solution to protect wallet-
related files using the extended Berkeley Filter (eBPF) that
continuously monitors, at the kernel level, the system calls of
processes and actively terminates unauthorized and malicious
processes when accessing such files. To demonstrate the feasibility
and performance of Scylla, a prototype was implemented and
evaluated in terms of access time overhead and resource use.
Such experiments show that Scylla is feasible and does not add
significant overhead, compared to a native Linux tool dedicated
to monitoring files (i.e., inotify) while being able to terminate
processes before they can read protected files.

Index Terms—Blockchain, Security, e BPF

I. INTRODUCTION

The concepts of blockchain (BC) and Distributed Ledger
Technology (DLT) [22] are widely used in a myriad of
applications in various fields, such as the Internet of Things
(IoT) [21], healthcare, networking [8], cybersecurity [7], and
finance [14]. As BC is inherently a distributed system without
a central control point, each of these applications participates
in this system through a node connected to the network. This
node is responsible for updating and synchronizing with other
nodes, managing the lifecycle of transactions (e.g., creation,
signing, and confirmation), performing BC wallet-related func-
tions (e.g., generating addresses and verifying balance), and
including new blocks verified by the network. Therefore, a
BC node plays a crucial role in any BC-based application.

However, due to this component being responsible for
various tasks, a security issue arises concerning the security
of these BC nodes. Examples of attacks on BC nodes include
but are not limited to (i) denial of service attacks, (ii) address
substitutions, and (iii) private key theft [16]. Considering that
BC nodes may contain private keys used to manage large
amounts of cryptocurrencies (e.g., nodes of cryptocurrency
exchanges or notary-based BC interoperability solutions [20]),
these attacks, especially attack (iii), are becoming increasingly

common [19]. Thus, there is a need to propose new tools
and approaches to protect these nodes and files against such
attacks. Furthermore, data breaches and data exfiltration are
of concern not only in the cryptocurrency world but also for
companies as the cost of a single data breach averages at
USD 4.88 million as pointed out by a recent IBM survey [9].

Although there are alternatives to improve the security
of the BC wallet, such as hardware wallets and air-gapped
solutions [24], [3], these also present issues such as usability as
they introduce additional steps for the BC interaction process
and high price as they rely on tailored and novel hardware.
In this sense, one possible approach to protect these nodes
is to use tools and technologies to monitor access, at the
operating system level, to wallets and files related to these
nodes. One such technology is the extended Berkeley Packet
Filter (eBPF), which allows the code to be run at the kernel
level without modifying it. eBPF has been used in various
security applications, including firewalls, network monitoring,
container security auditing, and policy enforcement [23].

In this context, we present Scylla, a solution designed
to protect BC wallet-related files against unauthorized ac-
cess through the utilization of eBPF. The proposed solution
employs fine-grained access control mechanisms to protect
critical files, such as account files, by actively monitoring
the system calls of processes directed to these sensitive
files. Scylla can be executed automatically during boot
time and protects user-defined files (which might include
Scylla’s source code files) based on their inodes, hence
not allowing malicious actors to read Scylla’s code or such
files. Evaluations of Scylla demonstrates its capability to
intercept processes attempting to read or modify the content
of a file without introducing significant overhead to legitimate
processes. Further, Scylla was compared to inotify, which
is a Linux kernel subsystem created to monitor changes in the
file system but is not capable of preventing file access.

The remainder of this paper is structured as follows. Sec-
tion II details background information on relevant concepts
and introduces approaches related to the solution proposed
here. Section III presents the design and implementation of
Scylla. Followed by Section IV, which presents the exper-
iments performed, analyzes the outcomes of the evaluation,
and discusses further applicability remarks. Finally, Section V
summarizes and concludes the paper, and outlines directions
for future research.



II. BACKGROUND AND RELATED WORK

This section provides the necessary knowledge of the con-
cepts involved in the solution and discusses similar approaches
relying on eBPF to secure files or to secure BC wallets.

A. extended Berkeley Packet Filter (eBPF)

eBPF allows developers to write code that can be dy-
namically loaded directly into the kernel of the target Linux
system without the necessity of recompiling the kernel’s
source code [18]. This means that novel functionalities can
also be included in the operating system’s kernel and modified
straightforwardly. eBPF is being used by several key players,
such as Google for security auditing, packet processing, and
performance monitoring, Datadog networking and security
in their Software-as-a-Service (SaaS) products, and Netflix
for network insights and monitoring [4]. These applications
highlight the versatility of eBPF, making it a compelling
technology to explore in the context of securing sensitive
BC files.

As eBPF programs must be attached to specific events,
they are always triggered on such an event [18]. For exam-
ple, within the scope of this paper, if an eBPF program is
attached to the system call (i.e., syscall) to open a file (i.e.,
sys_open), any program that invokes such a function will
trigger the eBPF program. This means that eBPF is able to
provide global observability of the machine and, combined
with the fact that eBPF programs run as native machine
instructions in the kernel, eBPF programs are able to achieve
high-performance monitoring as there is no cost of translating
commands from user space to kernel space.

B. Wallet Files

BC node software, such as Bitcoin Core and Geth, typically
includes not only functionalities for connecting and synchro-
nizing with the BC network but also built-in wallet software.
A BC wallet provides the essential functionalities to send
and receive cryptocurrency [24]. This involves tasks such as
creating addresses, creating transactions, and signing and later
broadcasting transactions.Wallets commonly store private keys
associated with addresses in standard file formats (e.g., JSON),
facilitating retrieval for transaction signing purposes. However,
it is important to note that there is no de jure standard for
the formatting of these files. Thus, each BC wallet employs a
different approach.

1) Ethereum: In Ethereum, accounts are stored in encrypted
files called “keystores”. These files contain information such
as the address, a ciphertext containing the encrypted 256-
bit private key, a Key-Derivation Function (KDF) and its
parameters (e.g., salt and iteration count) and metadata.

2) Bitcoin: Bitcoin stores private keys in encrypted files
named wallet.dat. However, these files store more than
individual private keys; they also contain information regard-
ing transactions made, user preferences, and, in the context
of Hierarchical Deterministic (HD) wallets, a seed utilized for
generating a master key and subsequent child keys.

C. Similar Approaches

There have been efforts to provide solutions that employ
eBPF to protect different aspects of the operating system
and its programs. For example, [6] proposes to control and
monitor the access of resources by users on Secure Shell
Protocol (SSH) sessions using eBPF. The solution defines
different scopes of access and a ssh-probe is placed within the
session to control syscalls and access. However, the solution
is still under development and no evaluation was performed.

EZIOTracer [10] uses eBPF to provide a tracer for data-
intensive applications that monitors input and output (I/O)
events in both kernel- and user-space to optimize the behavior
of modern storage systems. Their solution monitors file access
but only using read and write probes (e.g., vfs_ write and
vfs_ read syscalls) and does not actively block access to
files as Scylla does.

In terms of securing wallet files, the work of [2] lever-
ages a specific technology of ARM-based processors, called
TrustZones, to provide a secure lightweight Bitcoin wallet.
However, their approach is not flexible, as Scylla, being
implemented only for Bitcoin, and their approach must be exe-
cuted on ARM-based processors, which limits its applicability.

In contrast, [17] proposes a multilayered architectural ap-
proach to secure BC wallets. Their solution implements three
layers of protection for private keys, one that contains an
offline backup wallet, one containing the main wallet, and
the last one used for wallets that can spend funds. Although
the authors claim that such approach provides security to
private keys, it introduces additional layers in the user-wallet
interaction, hence introducing complexity for the end user.

Research in related work revealed that, to the best of this
paper’s authors’ knowledge, this is the first approach to employ
eBPF in the context of BCs and DLTs to monitor and secure
BC-related files, such as wallet files. Moreover, Scylla is
not limited to its application in a single BC or wallet, does
not introduce additional complexities for the user, and can
be employed to secure files for different security-related use
cases, such as ransomware protection.

ITII. SECURING WALLET FILES WITH EBPF

This section details the design and implementation of
Scylla. Our tool is composed of two programs: a user-
space program and a kernel-space program, which together are
able to protect a list of files defined by the user. Additionally,
Scylla maintains a list of permitted processes and protected
inodes to achieve such a protection.

A. Scylla Approach

The high-level architecture of Scylla is depicted in Fig-
ure 1. The figure illustrates the interaction of authorized and
malicious processes with Scylla in different layers (e.g.,
User Space, Linux Kernel, and Hardware). In the User Space
layer, regular user processes are executed and stored, which
can be authorized BC node-related processes (e.g., a Bitcoin or
Ethereum node) or malicious processes (e.g., an attacker). The
figure depicts two examples of Authorized Processes, “Geth”



is the command line interface for running a full Ethereum
node, and “Clef” is a command line tool that provides tools
to manage Ethereum accounts and sign transactions. These
processes interact with the Linux Kernel syscalls to perform
operations (e.g., reading and writing files) on the file system.
Further, “Malicious Process” are illustrated, which can be an
application or malicious user attempting to perform read or
write operations (cf. Table I) to access or manipulate wallet
files (cf. Section II-B).
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Fig. 1: High-Level Architecture of Scylla

The Linux Kernel layer comprises syscall interception, file
descriptor management, the Virtual File System (VES) layer,
and block device handling, while the Hardware layer manages
the actual storage hardware (e.g., hard disks). Scylla is
deployed as a new functionality in the Linux Kernel layer,
intercepting syscalls, allowing or restricting commands made
by processes to protect the integrity of sensitive files located in
user-defined directories (e.g., the “keystore” directory) based
on their inodes.

The dashed red line represents the attempted access path
of the malicious process, which was blocked by Scylla.
Scylla actively monitors syscalls from processes and verifies
if the process is allowed to manipulate keystore files, if
not, Scylla sends a signal to the kernel to terminate (i.e.,
sending a SIGKILL signal) such a process. The green dashed
lines illustrate the allowed access paths from the authorized
processes to the physical storage where keystore is located.

As Scylla intercepts syscalls, it is able to block several
basic commands that can be used to exfiltrate BC wallet files
or sensitive files outside the device or to different file systems.
Table I provides basic native Linux commands, their brief
description, and if they can be blocked by Scylla or not. In
summary, every process that performs the sys read syscall

TABLE I: Overview of Basic Linux Commands

Linux Command Description Blocked
cat, head, tail Displays the content of a file v
awk, cut, sort Process a file’s content v
diff Compares two files v
cp, scp Copies files and directories v
nano, vi Edits files v
file Verifies a file’s type v
mv Moves or rename files and directories X
1s Lists files and directories X
1n Creates links between files X
rm Deletes files and directories X

v/ X mv is blocked when interacting between different file systems

will be blocked by Scylla if its Process Identifier (PID) is
not in the allowed list. Thus, displaying, editing, or moving
data will not be possible by unauthorized processes.

B. eBPF Implementation

The source-code of the Scylla and the evaluations
presented in Section IV are available at [1] to promote
reproducibility. Scylla is composed of two main parts, a
Python-based one that loads the eBPF code and a C-based
one that contains the eBPF code that intercepts system calls
and blocks access. For the Python-based one, we relied on
BCC [15] to attach the eBPF part of Scylla in the system’s
kernel as a probe in the vfs_read event. The Python
command to attach to the eBPF program is presented in
Line 3 of Listing 1, where protected_ file is the eBPF
function that will be called for every vfs read event.

1 program = "readMonitor.c"

2 b = BPF(src_file = program)

3 b.attach_kprobe (event = "vfs_read",
protected_file")

fn_name = "

Listing 1: Attaching Scylla’s as a Kernel Probe

As the inodes are stored in a hash table, the time complexity
for inode lookup is O(1). The structure of this hash table
is presented in Line 1 of Listing 2, where each inode is
represented as a 32-bit unsigned integer in C. When retrieving
the inode of the file that was the target of the vfs read
syscall (as shown in Line 3), Scylla performs a lookup
for this inode in the hash table. If the inode is found within
the hash table (defined on Lines 5 and 6), Scylla proceeds
to verify the PID (c¢f. Listing 3). However, if the inode
is not present in the hash table, no further verification is
performed, implying that the file is not listed as a sensitive file.

BPF_HASH (inode_map, u32);

data.hooked_inode = file->f_inode->i_ino;

[E ISR R

u64 xinode_ptr = inode_map.lookup (&data.
hooked_inode) ;

if (inode_ptr != NULL) {

7 data.protected_inode =

o

*inode_ptr;

Listing 2: eBPF Code for inode Lookup




A snippet of the process for identifying and verifying
the eBPF code is presented in Listing 3. Similarly, for
the identification of the wallet-related files, a mapping is
defined (Line 1). Such permitted processes are identified by
unsigned 64-bit integers in the hash table. Scylla retrieves
the current PID and thread PID (Lines 3 and 4) of
the process that invoked vfs read syscall (i.e., the
potential malicious process). Then, it checks if this PID
exists in the permitted processes_map. If the
GPID is not found (i.e., process might be malicious), the
program writes a “GPID Not Authorized” message using
the output.perf submit function, which can be
utilized for logging or alerting purposes. Finally, to prevent
the possible malicious process from accessing the file’s
contents, Scylla sends a SIGKILL signal (Line 11),
represented by the number 9 on Unix-like systems, to
terminate the unauthorized process, effectively securing the
file’s sensitive content.

BPF_HASH (permitted_processes_map, u64);

u64 tgid = bpf_get_current_pid_tgid();
data.gpid = tgid >> 32;

LR R SRR R

u64 *permitted_process_ptr =
permitted_processes_map.lookup (&data.gpid);

7 if (permitted_process_ptr == NULL) {

8 char message[20] = "GPID Not Authorized";

9 bpf_probe_read_kernel (&¢data.message, sizeof (
data.message), message);

10 output.perf_submit (ctx, &data, sizeof (data));

11 bpf_send_signal (9);
12}

Listing 3: eBPF Code for Access Control based on PID

IV. EVALUATION AND DISCUSSION

A prototype of Scylla was implemented and evaluated
in different dimensions to show the feasibility of using eBPF
to protect BC wallet files. The evaluations were performed
in an 3.6 GHz Intel® Core™ i7-4790 machine running
Ubuntu 22.04.1 operating system, kernel 6.5.0-15, with 16 GB
of RAM and 1 TB HDD.

A. Access Time Overhead

The overhead introduced by each approach, namely
Scylla and inotify, was evaluated in two scenarios: without
verifying which file is being accessed (unprotected) and with
verification of the file access (protected). This was achieved
by measuring the file access time and comparing it to the
baseline access time (i.e., access without any protective ap-
proach in place). Figure 2 shows the overhead for each
approach along with the average baseline access time. The
normal time required to access a file was measured at 23 717
nanoseconds, or 2.3717 x 10~° seconds. In the protected
scenario, Scylla incurred a higher overhead, increasing
access time by 32%, compared to the increase 27% observed
with inotify. Despite the 32% increase in access time when
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Fig. 2: Overhead Comparison of the Different Approaches

using Scylla compared to the baseline, this increase is
negligible, since the times are still measured in nanoseconds.

In addition, it should be mentioned that inotify does not
offer functionalities to block system calls. Therefore, it cannot
achieve the goal of blocking access to wallet-related files. This
limitation is evident in the small difference, approximately 5%,
between protected and unprotected access times when using
inotify. In the protected scenario, inotify only verifies the inode
of the file. In contrast, Scylla verifies and actively blocks
access by sending a signal to terminate the process that sent
the syscall. Therefore, it results in a higher overhead compared
to the inode verification of inotify.

B. Resource Usage

Another important aspect evaluated was the resource con-
sumption introduced by Scylla compared to inotify and the
normal file access. For this evaluation, two tests were con-
ducted: (i) the total CPU usage of the machine was measured
over a duration of 150 seconds during which one access (i.e., a
cat command) to a protected file was performed, and (ii) the
total CPU usage was measured over 5 minutes (300 seconds)
during continuous access to the protected file.

Figure 3 illustrates the results of the first test. The y-axis
represents CPU usage in percentage, ranging from 0% to 20%
and the x-axis represents time in seconds. It is observed that
both Scylla and inotify do not introduce significant CPU
usage overhead when idle. However, upon the triggering of a
sys_read syscall, the CPU usage peaks at approximately
20% for Scylla, 17.5% for inotify, and 15% for normal
file access. Scylla introduces a small CPU usage overhead
of about 5% compared to normal access, which is likely
attributable to the verification process and the command exe-
cution to terminate the malicious process. Thus, given the fact
that inotify only verifies the file being accessed and does not
block access to the file, the overhead of Scyl1la is acceptable.
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The results of the second test are depicted in Figure 4, where
the y-axis represents the CPU usage, ranging from 0% to 30%,
and the x-axis represents the time in seconds. In this test, all
solutions were subjected to a high-stress scenario to analyze
their behavior during intense activity, which was processing
a file access call every 5 microseconds over a period of 5
minutes. The graph indicates that both Scylla and inotify
exhibit similar levels of CPU usage under these conditions.
Additionally, it is important to note that, apart from the initial
usage peak, there were no significant increases in CPU usage
for either solution. This suggests that Scylla is stable and
does not incur additional CPU load even when handling a high
rate of sequential file access requests.
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Fig. 4: CPU Usage under File Access Stress

C. Applicability Remarks

During the development of Scyl1la, eBPF has been shown
to be a powerful tool for fine-grained control over the oper-
ating system’s functionalities and for extending them without
introducing complex interactions with kernel compilation. Fur-
thermore, given eBPF’s flexibility, programs can be injected
and modified at run-time, offering adaptability to rapidly
evolving system requirements, such as the case of novel BC
applications. This feature is crucial for Scylla as it can be
adapted to new challenges and changes in BC protocols, e.g.,
new Ethereum Improvement Proposals (EIP) [5].

Moreover, considering that most Unix and Linux-based sys-
tems follow the principle “everything is a file” [12], in which
resources (e.g., documents, disks, peripherals, and network
devices) are handled as streams of bytes read and written
directly as files using the native file system, the proposed
solution in this paper is not bound to the BC context. Other
approaches may rely on our approach to develop tools that
can be used in different contexts, such as protection against
ransomware, sensitive file access, and keyring security. Thus,
showing that Scylla is an interesting and robust approach
to secure several aspects of the operating system.

Security implications are also a concern for the usage
of eBPF. Threat modeling has to be conducted to verify
how the usage of eBPF can be susceptible to cyberattacks
and, consequently, impact the overall security proposed by
Scylla. Besides conduct a threat modeling (e.g., MITRE
ATT&CK, STRIDE, and OWASP Threat Dragon) [25] against
the eBPF itself, specific tools can be used to verify eBPF im-
plementations [11] and find errors that may generate potential
security issues [13].

Finally, while Scylla was initially used to protect
Ethereum-related wallet files in this paper, its application is
not restricted to Ethereum alone. It can be used effectively to
protect the wallets of other blockchains, such as Bitcoin (cf.
Section II-B). This generic applicability is possible because
Scylla handles inodes and process PIDs, and does not
require any BC-specific code or adapters. Therefore, it is
flexible enough to be used on servers hosting a single BC
node or multiple nodes from different BCs.

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

With the increasing number of applications based on
blockchain (BC) and their use in different areas, securing the
underlying server that hosts BC-related software (e.g., BC
nodes and wallets) used to connect and participate in BC
networks becomes increasingly crucial. Moreover, not only do
exchanges hold a significant amount of cryptocurrencies, but
also BC-based applications need to possess cryptocurrencies to
cover mining and interaction fees; hence, BC-based exchanges
and applications are targets for cyberattacks aiming to exfil-
trate private keys of BC accounts to steal their cryptocurrency.

To address such an issue, this paper detailed the design,
implementation, and evaluation of a full-fledged solution,
called Scylla, which uses extended Berkeley Packet Filter
(eBPF) technology to protect BC wallet files against malicious



unauthorized access. Scylla acts directly at the kernel level
to intercept syscalls from malicious processes and is capable
of terminating processes that attempt to access user-defined
sensitive files automatically. Further, Scy11la maintains a list
of authorized processes (e.g., Geth and Clef in Ethereum)
that are able to read such files (e.g., BC nodes and wal-
lets). Evaluations of Scylla demonstrated its feasibility and
acceptable overhead compared to a solution (i.e., inotify)
that is not capable of terminating the process. Furthermore,
Scylla has been shown to be stable when handling a high
rate of sequential file access.

In conclusion, eBPF was successfully employed in
Scylla to provide fine-grained access control to BC wallet-
related files without additional layers of interaction for system
administrators by adding additional functionality in the Linux
kernel. Scylla’s employment is not restricted to the BC
context, but can be effectively applied to other contexts,
such as ransomware protection, showing the high flexibility
of Scylla.

Future work regarding Scylla includes but is not limited
to, (i) design a Graphical User Interface (GUI) for user
interaction, (ii) research on Machine Learning (ML) models
to determine the behavior of legitimate processes, (iii) further
testing of Scylla across different environment and hardware
platforms, and (iv) investigating its use in the ransomware
context with further threat modelling analysis and discussion
on security considerations.
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